Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T12:37:17.885Z Has data issue: false hasContentIssue false

19.—Asymptotic Stability for Some Functional Differential Equations

Published online by Cambridge University Press:  14 February 2012

Hans-Otto Walther
Affiliation:
Mathematisches Institut der Universität München.

Synopsis

For a non-linear functional differential equation from population biology, a result on asymptotic stability is obtained by investigating the zeros of the characteristic equation of the linearised functional differential equation.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Hale, J.. Linear functional differential equations with constant coefficients. Cont. Differential Equations 2 (1963), 291319.Google Scholar
2Hale, J.. Functional differential equations (Berlin: Springer, 1971).CrossRefGoogle Scholar
3Myškis, A. D.. Lineare Differentialgleichungen mit nacheilendem Argument (Berlin: Deutscher Verlag der Wissenschaften, 1955).Google Scholar
4Seminar on differential equations and dynamical systems. Lecture Notesin Mathematics 60 (Berlin: Springer, 1968).Google Scholar
5Walther, H.-O.. Stability of attractivity regions for autonomous functional differential equations. Manuscripta Math. 15 (1975), 349363.CrossRefGoogle Scholar
6Wright, E. M.. A non-linear difference-differential equation. J. Reine Angew. Math. 194 (1955), 6687.CrossRefGoogle Scholar
7Yorke, J. A.. Asymptotic stability for one-dimensional differential-delay equations. J. Differential Equations 7 (1970), 189202.CrossRefGoogle Scholar