Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T13:55:33.871Z Has data issue: false hasContentIssue false

16.—A Note on Adjoint Operators

Published online by Cambridge University Press:  14 February 2012

A. Dijksma
Affiliation:
Mathematisch Instituut, Rijksuniversiteit te Groningen
H. S. V. de Snoo
Affiliation:
Mathematisch Instituut, Rijksuniversiteit te Groningen

Extract

In the Hilbertspace with (,) as inner product we consider the linear operator L with domain D(L) and the sesqui-linear form 〈, 〉 defined by

Let the symmetric operator L0 be the restriction of L to D(L0), where

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

[1]Akhiezer, N. I. and Glazman, I. M., 1966. Theory of Linear Operators in Hilbert Space. New York: Ungar.Google Scholar
[2]Coddington, E. A., 1954. The spectral representation of ordinary self-adjoint differential operators. Ann. Math., 60, 192211.CrossRefGoogle Scholar
[3]Coddington, E. A., 1954 The spectral matrix and Green's function for singular self-adjoint boundary value problems. Can. Jl Math., 6, 169185.CrossRefGoogle Scholar
[4]Coddington, E. A., 1958. Generalized resolutions of the identity for symmetric ordinary differential operators. Ann. Math., 68, 378392.CrossRefGoogle Scholar
[5]Coddington, E. A., 1967. Generalized Sturm-Liouville Theory. Lectures delivered at the Instructional Conference on Differential Equations, Edinburgh.Google Scholar
[6]Coddington, E. A., 1973. Extension theory of formally normal and symmetric subspaces. Mem. Amer. Math. Soc, 134.CrossRefGoogle Scholar
[7]Coddington, E. A.,, 1973. Self-adjoint subspace extensions of non-densely defined symmetric operators. Bull. Amer. Math. Soc., 79, 712715.CrossRefGoogle Scholar
[8]Dijksma, A. and De Snoo, H. S. V., 1973. Symmetric subspaces and a certain class of eigenvalue problems. Comp. Math., 26, 233247.Google Scholar
[9]Schechter, M., 1971. Spectra of Partial Differential Operators. Amsterdam and London: North-Holland Publishing.Google Scholar