Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T09:14:48.641Z Has data issue: false hasContentIssue false

Whole-body protein and amino acid turnover in man: what can we measure with confidence?

Published online by Cambridge University Press:  28 February 2007

D. J. Millward
Affiliation:
Nutrition Research Unit, London School of Hygiene and Tropical Medicine, 4 St Pancras Way, LondonNW1 2PE
G. M. Price
Affiliation:
Nutrition Research Unit, London School of Hygiene and Tropical Medicine, 4 St Pancras Way, LondonNW1 2PE
P. J. H. Pacy
Affiliation:
Nutrition Research Group, Clinical Research Centre, Harrow, Middlesex HA1 3UJ
D. Halliday
Affiliation:
Nutrition Research Group, Clinical Research Centre, Harrow, Middlesex HA1 3UJ
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Clinical aspects of protein and energy metabolism’
Copyright
The Nutrition Society

References

Ballevre, O., Cadenhead, A., Calder, A. G., Rees, W. D., Lobley, G. E., Fuller, M. F. & Garlick, P. J. (1990). Quantitative partition of threonone oxidation in pigs: effect of dietary threonine. American Journal of Physiology (In the Press.)Google Scholar
Bier, D. M., Matthews, D. E. & Young, V. R. (1985). Interpretation of amino acid kinetic studies in the context of whole-body protein metabolism. In Substrate and Energy Metabolis in Man, pp. 2736 [Garrow, J. S. and Halliday, D., editors]. London and Paris: John Libbey.Google Scholar
Cheng, K. N., Pacy, P. J., Dworzak, F., Ford, G. C. & Halliday, D. (1987). Influence of fasting on leucine and muscle protein metabolism across the human forearm determined using L-[1–13C, 15N]leucine as the tracer. Clinical Science 73, 241246.CrossRefGoogle ScholarPubMed
Clarke, J. T. R. & Bier, D. M. (1982). The conversion of phenylalanine to tyrosine in man. Direct measurement by continuous intravenous tracer infusions of L-[ring-2H5]phenylalanine and L-[1-13C]tyrosine in the postabsorptive state. Metabolism 31, 9991005.CrossRefGoogle ScholarPubMed
De Benoist, B., Abdulrazzak, Y., Brooke, O. G., Halliday, D. & Millward, D. J. (1984). The measurement of whole body protein turnover in the preterm infant with intragastric infusion of L-[1-13C]leucine and sampling of the urinary leucine pool. Clinical Science 66, 155164.CrossRefGoogle ScholarPubMed
Fern, E. B., Garlick, P. J. & Waterlow, J. C. (1985). Apparent compartmentation of body nitrogen in one human subject: its consequences in measuring the rate of whole-body protein synthesis with 15N. Clinical Science 68, 271282.CrossRefGoogle ScholarPubMed
Garlick, P. J. & Clugston, G. A. (1981). Measurement of whole body protein turnover by constant infusion of carboxyl-labelled leucine. In Nitrogen Metabolis in Man, pp. 303322 [Waterlow, J. C. and Stephen, J. M. L., editors]. London and New Jersey: Applied Science Publishers.Google Scholar
Golden, M. H. N. & Waterlow, J. C. (1977). Total protein synthesis in elderly people: a comparison of results with [15N]glycine and [14C]leucine. Clinical Science and Molecular Medicine 53, 277288.Google ScholarPubMed
Halliday, D., Pacy, P. J., Cheng, K. N., Dworzak, F., Gibson, J. N. A. & Rennie, M. J. (1988). Rate of protein synthesis in skeletal muscle of normal man and patients with muscular dystrophy: a reassessment. Clinical Science 74, 237240.CrossRefGoogle ScholarPubMed
Hegsted, D. M. (1976). Balance studies. Journal of Nutrition 106, 307311.CrossRefGoogle Scholar
Imura, K. & Walser, M. (1988). Rate of whole-body protein synthesis in the rat as calculated from fractional oxidation of leucine, valine or methionine. Metabolism 37, 591596.CrossRefGoogle ScholarPubMed
Kandil, H., Darwish, O., Hammad, S., Zagloul, N., Halliday, D. & Millward, D. J. (1991). Nitrogen balance and protein turnover during the growth failure in newly-born low birth weight infants. American Journal of Clinical Nutrition (In the Press.)CrossRefGoogle ScholarPubMed
Jackson, A. A., Landman, J. P., Stevens, M. C. G. & Serjeant, G. R. (1988). Urea kinetics in adul⃛s with homozygous sickle cell disease. European Journal of Clinical Nutrition 42, 491496.Google Scholar
McNurlan, M. A. & Garlick, P. J. (1989). Influence of nutrient intake on protein turnover. Diabetes-Metabolism Reviews 5, 175190.CrossRefGoogle ScholarPubMed
Millward, D. J. (1989). The endocrine response to dietary protein: the anabolic drive on growth. In Milk Protein in Human Nutrition, pp. 4961 [Bath, C. A. and Schlimme, E., editors]. Darmstadt: Steinkopff Verlag.CrossRefGoogle Scholar
Millward, D. J. (1990). The hormone control of protein turnover: the Arvid Wretlind Lecture, 1989. Clinical Nutrition 9, 115126.CrossRefGoogle Scholar
Millward, D. J., Jackson, A. A., Price, G. & Rivers, J. P. W. (1989). Human amino acid and protein requirements: Current dilemmas and uncertainties. Nutrition Research Reviews 2, 109132.CrossRefGoogle ScholarPubMed
Millward, D. J., Price, G. M., Pacy, P. J. H. & Halliday, D. (1990). Maintenance protein requirements: the need for conceptual revaluation. Proceedings of the Nutrition Society 49, 473487.CrossRefGoogle Scholar
Millward, D. J. & Rivers, J. (1988). The nutritional role of indispensable amino acids and the metabolic basis for their requirements. European Journal of Clinica Nutrition 42, 367393.Google ScholarPubMed
Millward, D. J. & Rivers, J. P. W. (1989). The need for indispensable amino acids: the concept of the anabolic drive. Diabetes–Metabolism Reviews 5, 191212.CrossRefGoogle ScholarPubMed
Obled, C., Barre, F., Millward, D. J. & Arnal, M. (1989). Whole body protein synthesis: studies with different amino acids in the rat. American Journal of Physiology 257, E639–E646.Google ScholarPubMed
Paul, A. A. & Southgate, D. A. T. (1978). McCance and Widdowson's The Composition of Foods, 4th ed. London: H.M. Stationery Office.Google Scholar
Price, G., Millward, D. J., Pacy, P. J. H. & Halliday, D. (1990). Validation of new model for whole body protein homeostasis and protein requirements in the adult. Proceedings of the Nutrition Society 49, 194A.Google Scholar
Rennie, M. J., Edwards, R. H. T., Halliday, D., Matthews, D. E., Wolman, S. L. & Millward, D. J. (1982). Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clinical Science 63, 519523.CrossRefGoogle ScholarPubMed
Thompson, G. N., Pacy, P. J. H., Merritt, H., Ford, G. C., Read, M. A., Cheng, K. N. & Halliday, D. (1989). Rapid measurement of whole body and forearm protein turnover using a [2H5]phenylalanine model. American Journal of Physiology 256, E631–E639.Google ScholarPubMed
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in mammalian Tissues and in the Whole Body. AmsterdamP: Elsevier/North-Holland Biomedical Press.Google Scholar
Wenhum, D., Pacy, P. J., Halliday, D., Price, G. & Millward, D. J. (1991). Bicarbonate recovery: feeding v. time. Proceedings of the Nutrition Society 50, 47A.Google Scholar
Young, V. R. (1986). Nutritional balance sudies: indicators of human requirements or of adaptive mechanisms? Journal of Nutrition 116, 700703.Google Scholar
Zhao, X. -H.., Wen, Z. -M.., Meredith, C. N., Matthews, D. E., Bier, D. M. & Young, V. R. (1986). Threonine kinetics at graded threonine intakes in young men. American Journal of Clinical Nutrition 43, 795802.CrossRefGoogle ScholarPubMed