Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T10:07:01.925Z Has data issue: false hasContentIssue false

Riboflavin–iron interactions with particular emphasis on the gastrointestinal tract

Published online by Cambridge University Press:  28 February 2007

Hilary J. Powers
Affiliation:
The University Department of Paediatrics, Sheffield Children's Hospital, Sheffield S10 2TH
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Micronutrient interactions’
Copyright
Copyright © The Nutrition Society 1995

References

Adelekan, D. A. & Thurnham, D. I. (1986 a). Effects of combined riboflavin and iron deficiency on the haematological status and tissue iron concentrations of the rat. Journal of Nutrition 116, 12571265.CrossRefGoogle ScholarPubMed
Adelekan, D. A. & Thurnham, D. I. (1986 b). The influence of riboflavin deficiency on absorption and liver storage of iron in the growing rat. British Journal of Nutrition 56, 171179.CrossRefGoogle ScholarPubMed
Bates, C. J., Prentice, A. M., Paul, A. A., Prentice, A., Sutcliffe, B. A. & Whitehead, R. G. (1982). Riboflavin status in infants born in rural Gambia, and the effect of a weaning food supplement. Transactions of the Royal Society of Tropical Medicine and Hygiene 76, 253258.CrossRefGoogle ScholarPubMed
Bates, C. J., Prentice, A. M., Paul, A. A., Sutcliffe, B. A., Watkinson, M. & Whitehead, R. (1981). Riboflavin status in Gambian pregnant and lactating women and its implications for recommended dietary allowances. American Journal of Clinical Nutrition 34, 928935.CrossRefGoogle ScholarPubMed
Butler, B. F. & Topham, R. W. (1993). Comparison of changes in the uptake and mucosal processing of iron in riboflavin-deficient rats. Biochemistry and Molecular Biology International 30, 5361.Google ScholarPubMed
Buzina, R., Jusic, M., Milanovic, N., Sapunar, J. & Brubacher, G. (1979). The effects of riboflavin administration on iron metabolism parameters in a school-going population. International Journal for Vitamin and Nutrition Research 49, 136143.Google Scholar
Charoenlarp, P., Pholphothi, T., Chatpunyaporn, P. & Schelp, F. P. (1980). The effect of riboflavin on the hematologic changes in iron supplementation of schoolchildren. Southeast Asian Journal of Tropical Medicine and Public Health 11, 97103.Google ScholarPubMed
Conrad, M. E., Unmreit, J. N. & Moore, E. G. (1993). Regulation of iron absorption: proteins involved in duodenal mucosal uptake and iron transport. Journal of the American College of Nutrition 12, 720728.CrossRefGoogle Scholar
Crichton, R. R., Roman, F. & Wauters, M. (1975). Reductive mobilisation of ferritin iron by reduced nicotinamide adenine dinucleotide via flavin mononucleotide. Biochemical Society Transactions 3, 946948.CrossRefGoogle Scholar
Decker, K., Dotis, B., Glatzle, D. & Hinselmann, M. (1977). Riboflavin status and anaemia in pregnant women. Nutrition and Metabolism 21, Suppl. 1, 1719.CrossRefGoogle ScholarPubMed
Endicott, K. M., Kornberg, A. & Ott, M. (1947). Hemopoiesis in riboflavin-deficient rats. Blood 2, 164174.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Powers, H. J., Minski, M. J., Whitehead, J. & Downes, R. (1992). Riboflavin deficiency and iron absorption in adult Gambian men. Annuls of Nutrition and Metabolism 36, 3440.CrossRefGoogle ScholarPubMed
Fairweather-Tait, S. J., Swindell, T. E. & Wright, A. J. A. (1985). Further studies in rats of the influence of previous iron intake on the estimation of the bioavailability of Fe. British Journal of Nutrition 54, 7986.CrossRefGoogle ScholarPubMed
Foy, H. & Kondi, A. (1953). A case of true red-cell aplastic anaemia successfully treated with riboflavin. Journal of Pathological Bacteriology 65, 559564.CrossRefGoogle Scholar
Foy, H. & Kondi, A. (1958). Anemias of the Tropics: East Africa, with special reference to proteins and liver damage. Transactions of the Royal Society of Tropical Medicine and Hygiene 52, 4670.CrossRefGoogle ScholarPubMed
Foy, H. & Kondi, A. (1968). A comparison between erythroid aplasia in marasmus and kwashiorkor and the experimentally induced erythroidaplasia in baboons- by riboflavin deficiency. Vitamins and Hormones 26, 653679.CrossRefGoogle ScholarPubMed
Foy, H., Kondi, A. & Mbaya, V. (1964). Effect of riboflavin deficiency on bone marrow function and protein metabolism in baboons. Preliminary report. British Journal of Nutrition 18, 307317.CrossRefGoogle Scholar
Frieden, E. & Osaki, S. (1974). Ferroxidases and ferrireductases: their role in iron metabolism. Advances in Experimental Biology and Medicine 48, 235265.CrossRefGoogle ScholarPubMed
Jamdar, S. C., Udupar, K. B. & Chatterji, A. (1968). Study of hematopoiesis in riboflavin deficient rats with 59Fe as tracer. Journal of Nutritional Science and Vitaminology 14, 219222.CrossRefGoogle ScholarPubMed
King, I. S., Paterson, Y. J. F., Peacock, M. A., Smith, M. W. & Syme, G. (1983). Effect of diet on enterocyte differentiation in the rat jejunum. Journal of Physiology 344, 465481.CrossRefGoogle ScholarPubMed
Lane, M., Alfrey, C. P., Mengel, C. E., Doherty, M. N. A. & Doherty, J. (1964). The rapid induction of human riboflavin deficiency with galactoflavin. Journal of Clinical Investigation 43, 357373.CrossRefGoogle ScholarPubMed
Powers, H. J. (1985). Experiment to determine the effect of riboflavin deficiency at weaning on iron economy and heme synthesis. Annals of Nutrition and Metabolism 29, 261266.CrossRefGoogle ScholarPubMed
Powers, H. J. (1986). Investigation into the relative effects of riboflavin deficiency on iron economy in the weanling rat and the adult. Annals of Nutrition and Metabolism 30, 308315.CrossRefGoogle ScholarPubMed
Powers, H. J. (1987). A study of maternofetal iron transfer in the riboflavin deficient rat. Journal of Nutrition 117, 852856.CrossRefGoogle ScholarPubMed
Powers, H. J., Bates, C. J. & Duerden, J. M. (1983 a). Effects of riboflavin deficiency in rats on some aspects of iron metabolism. International Journal for Vitamin and Nutrition Research 53, 371376.Google ScholarPubMed
Powers, H. J., Bates, C. J. & Lamb, W. H. (1985). Haematological response to supplements of iron and riboflavin to pregnant and lactating women in rural Gambia. Human Nutrition: Clinical Nutrition 39C, 117129.Google Scholar
Powers, H. J., Bates, C. J., Prentice, A. M., Lamb, W. H., Jepson, M. & Bowman, H. (1983 b). The relative effectiveness of iron and iron with riboflavin in correcting a microcytic anaemia in men and children in rural Gambia. Human Nutrition: Clinical Nutrition 37C, 413425.Google ScholarPubMed
Powers, H. J. & Thurnham, D. I. (1980). Physiological effects of marginal riboflavin deficiency in young adults and geriatrics: a reduction in the survival time of erythrocytes. Proceedings of the Nutrition Society 39, 17A.Google ScholarPubMed
Powers, H. J., Weaver, L. T., Austin, S. & Beresford, J. K. (1993). A proposed intestinal mechanism for the effect of riboflavin deficiency on iron loss in the rat. British Journal of Nutrition 69, 553561.CrossRefGoogle ScholarPubMed
Powers, H. J., Weaver, L. T., Austin, S., Wright, A. J. A. & Fairweather-Tait, J. (1991). Riboflavin deficiency in the rat: effects on iron utilisation and loss. British Journal of Nutrition 65, 487496.CrossRefGoogle ScholarPubMed
Powers, H. J., Wright, A. J. A. & Fairweather-Tait, S. J. (1988). The effect of riboflavin deficiency in rats on the absorption and distribution of iron. British Journal of Nutrition 59, 381387.CrossRefGoogle Scholar
Rasmussen, K. N., Barsa, P. M. & McCormick, D. B. (1979). Pyridoxamine (Pyridoxine) S′phosphate oxidase activity in rat tissues during development of riboflavin or pyridoxine deficiency. Proceedings of the Society for Experimental Biology and Medicine 161, 527530.CrossRefGoogle ScholarPubMed
Sirivech, S., Driskell, J. & Frieden, E. (1977). NADH-FMN oxidoreductase activity and iron content of organs from riboflavin-deficient and iron-deficient rats. Journal of Nutrition 107, 739745.CrossRefGoogle ScholarPubMed
Sirivech, S., Frieden, E. & Osaki, S. (1974). The release of iron from horse spleen ferritin by reduced flavins. Biochemical Journal 143, 311315.CrossRefGoogle ScholarPubMed
Spector, H., Mass, A. R., Michaud, L., Elverjem, C. A. & Hart, E. B. (1943). The role of riboflavin in blood regeneration. Journal of Biological Chemistry 150, 7587.CrossRefGoogle Scholar
Terrill, S. W., Ammerman, C. B., Walker, D. E., Edwards, R. M., Norton, H. W. & Becker, D. E. (1953). Riboflavin studies in pigs. Journal of Animal Science 14, 593601.CrossRefGoogle Scholar
Thurnham, D. I. (1972). Influence of glucose-6-phosphate dehydrogenase deficiency on the glutathione reductase test for ariboflavinosis. Annals of Tropical Medicine and Parasitology 66, 505507.CrossRefGoogle ScholarPubMed
Ulvik, R. J. (1983). Reduction of exogenous flavins and mobilisation of iron from ferritin by isolated mitochondria. Journal of Bioenergetics and Biomembranes 15, 151160.CrossRefGoogle ScholarPubMed
Williams, E. A., Powers, H. J. & Rumsey, R. D. E. (1994 a). Riboflavin depletion at weaning is associated with a failure to reach normal villus number in the rat duodenum. Proceedings of the Nutrition Society 53, 209A.Google Scholar
Williams, E. A., Powers, H. J. & Rumsey, R. D. E. (1995). Morphological changes in the rat small intestine in response to riboflavin depletion. British Journal of Nutrition 73, 141146.CrossRefGoogle ScholarPubMed
Williams, E. A., Rumsey, R. D. E. & Powers, H. J. (1994 b). Riboflavin depletion enhances the transit of enterocytes along the villi. Proceedings of the Nutrition Society 53, 149A.Google Scholar
Wright, N. A. & Appleton, D. R. (1980). The metaphase arrest technique: a critical review. Cell Tissue Kinetics 13, 643663.Google ScholarPubMed
Wright, N. A. & Irwin, M. (1982). The kinetics of villus cell populations in the mouse small intestine. Cell Tissue Kinetics 15, 596609.Google ScholarPubMed
Wynford-Thomas, D. & Williams, E. D. (1986). Use of bromodeoxyuridine for cell kinetic studies in intact animals. Cell Tissue Kinetics 19, 179182.Google ScholarPubMed
Zaman, Z. & Verwilghen, R. L. (1977). Effect of riboflavin deficiency on activity of NADH-FMN oxidoreductase (ferriductase) and iron content of rat liver. Biochemical Society Transactions 5, 306308.CrossRefGoogle ScholarPubMed