Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-16T21:55:50.498Z Has data issue: false hasContentIssue false

Regulatory factors in the control of muscle development

Published online by Cambridge University Press:  11 October 2007

M. J. Dauncey
Affiliation:
Department of Cellular Physiology, The Babraham Institute, Cambridge, CB2 4AT
R. S. Gilmour
Affiliation:
Department of Cellular Physiology, The Babraham Institute, Cambridge, CB2 4AT
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Regulatory Factors in the Control of Development and Maturation
Copyright
Copyright © The Nutrition Society 1996

References

Arthur, J. R., Nicol, F. & Beckett, G. J. (1990). Hepatic iodothyronine 5′-deiodinase. The role of selenium. Biochemical Journal 272, 537540.CrossRefGoogle ScholarPubMed
Ayling, C. M., Zanelli, J. M., Moreland, B. M. & Schulster, D. (1992). Effect of human growth hormone injection on the fibre type composition and metabolic activity in a skeletal muscle from normal and hypophysectomized rats. Growth Regulation 2, 133143.Google Scholar
Barker, D. J. P., Gluckman, P. D., Godfrey, K. M., Harding, J. E., Owens, J. A. & Robinson, J. S. (1993). Fetal nutrition and cardiovascular disease in adult life. Lancet 341, 938941.CrossRefGoogle ScholarPubMed
Bassett, J. M., Thorburn, G. D. & Wallace, A. L. C. (1970). The plasma growth hormone concentration in the fetal lamb. Journal of Endocrinology 48, 251263.CrossRefGoogle Scholar
Benezra, R., Davis, R. L., Lockson, D., Turner, D. L. & Weintraub, H. (1990). The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61, 4959.CrossRefGoogle Scholar
Berthon, D., Herpin, P., Duchamp, C., Dauncey, M. J. & Le Dividich, J. (1993). Modification of thermogenic capacity in neonatal pigs by changes in thyroid status during late gestation. Journal of Developmental Physiology 19, 253261.Google ScholarPubMed
Brand, M. D. & Murphy, M. P. (1987). Control of electron flux through the respiratory chain in mitochondria and cells. Biological Reviews 63, 141193.CrossRefGoogle Scholar
Brozanski, B. S., Daood, M. J., LaFramboise, W. A., Watchko, J. F., Foley, T. P., Butler-Browne, G. S., Whalen, R. G., Guthrie, R. D. & Ontell, M. (1991). Effects of perinatal undernutrition on elimination of immature myosin isoforms in the rat diaphragm. American Journal of Physiology 261, L49L54.Google ScholarPubMed
Bowen, R. A., Reed, M. L., Schnieke, A., Seidel, G. E., Stacey, A., Thomas, W. K. & Kajikawa, O. (1994). Transgenic cattle resulting from biopsied embryos: expression of c-ski in a transgenic calf. Biology of Reproduction 50, 664668.CrossRefGoogle Scholar
Buckingham, M. (1994). Molecular biology of muscle development. Cell 78, 1521.CrossRefGoogle ScholarPubMed
Carnac, G., Albagli-Curiel, O., Vandromme, M., Pinset, C., Montarras, D., Laudet, V. & Bonnieu, A. (1992). 3,5,3′-Triiodothyronine positively regulates both MyoDl gene transcription and terminal differentiation in C2 myoblasts. Molecular Endocrinology 6, 11851194.Google ScholarPubMed
Chang, K. C., Fernandes, K. & Dauncey, M. J. (1995). Molecular characterization of a developmentally regulated porcine skeletal myosin heavy chain gene and its 5′ regulatory region. Journal of Cell Science 108, 17791789.CrossRefGoogle ScholarPubMed
Clausen, T., van Hardeveld, C. & Everts, M. E. (1991). Significance of cation transport in control of energy metabolism and thermogenesis. Physiological Reviews 71, 733774.CrossRefGoogle ScholarPubMed
d'Albis, A., Butler-Browne, G. (1993). The hormonal control of myosin isoform expression in skeletal muscle of mammals: a review. Basic and Applied Myology 3, 716.Google Scholar
d'Albis, A., Chanoine, C., Janmot, C., Mira, J. C. & Couteaux, R. (1990). Muscle-specific response to thyroid hormone of myosin isoform transitions during rat postnatal development. European Journal of Biochemistry 193, 155161.CrossRefGoogle ScholarPubMed
Dauncey, M. J. (1990). Thyroid hormones and thermogenesis. Proceedings of the Nutrition Society 49, 203215.CrossRefGoogle ScholarPubMed
Dauncey, M. J. (1995a). From whole body to molecule: an integrated approach to the regulation of metabolism and growth. Thermochimica Acta 250, 305318.CrossRefGoogle Scholar
Dauncey, M. J. (1995b). Role of energy status in postnatal growth and development. In Proceedings of the Fourth International Conference on Veterinary Perinatology, pp. 4247Newmarket: R. & W. Pubhcation Limited.Google Scholar
Dauncey, M. J., Burton, K. A. & Tivey, D. R. (1994a). Nutritional modulation of insulin-like growth factor-1 expression in early postnatal piglets. Pediatric Research 36, 7784.CrossRefGoogle ScholarPubMed
Dauncey, M. J., Burton, K. A., White, P., Harrison, A. P., Gilmour, R. S., Duchamp, C. & Cattaneo, D. (1994b). Nutritional regulation of growth hormone receptor gene expression. FASEB Journal 8, 8188.CrossRefGoogle ScholarPubMed
Dauncey, M. J. & Harrison, A. P. (1996). Developmental regulation of cation pumps in skeletal and cardiac muscle. Acta Physiologica Scandinavica 156, 313323.CrossRefGoogle ScholarPubMed
Dauncey, M. J., Rudd, B. T., White, D. A. & Shakespear, R. A. (1994c). Regulation of insulin-like growth factor binding proteins in young growing animals by alteration of energy status. Growth Regulation 3, 198207.Google Scholar
DeNardi, C., Ausoni, S., Moretti, P., Gorza, L., Velleca, M., Buckingham, M. & Schiaffino, S. (1993). Type 2X-myosin heavy chain is coded by a muscle fiber type-specific and developmentally regulated gene. Journal of Cell Biology 123, 823835.CrossRefGoogle ScholarPubMed
Devol, D. L., Rotwein, P., Sadow, J. L., Novakofski, J. & Bechtel, P. J. (1990). Activation of IGF gene expression during work-induced skeletal muscle growth. American Journal of Physiology 259, E89E95.Google ScholarPubMed
Donovan, S. M. & Odle, J. (1994). Growth factors in milk as mediators of infant development. Annual Review of Nutrition 14, 147167.CrossRefGoogle ScholarPubMed
Draeger, A., Weeds, A. G. & Fitzsimons, R. B. (1987). Primary, secondary and tertiary myotubes in developing skeletal muscle: a new approach to the analysis of human myogenesis. Journal of Neurological Science 81, 1943.CrossRefGoogle Scholar
Drummond, I. A., Rohwernutter, P. & Sukhatme, V. P. (1994). The zebrafish egrl gene encodes a highly conserved, zinc-finger transcriptional regulator. DNA and Cell Biology 13, 10471055.CrossRefGoogle Scholar
Dubois, J. D. & Dussault, J. H. (1977). Ontogenesis of thyroid function in the neonatal rat. Thyroxine (T4) and triiodothyronine (Ts) production rates. Endocrinology 101, 435441.CrossRefGoogle Scholar
Duchamp, C., Burton, K. A., Herpin, P. & Dauncey, M. J. (1994a). Perinatal ontogeny of porcine nuclear thyroid hormone receptors and its modulation by thyroid status. American Journal of Physiology 267, E687E693.Google ScholarPubMed
Duchamp, C., Burton, K. A., Herpin, P. & Dauncey, M. J. (1994b). Differential regulation of growth hormone receptor gene expression by thyroid status in perinatal pigs. Journal of Endocrinology 140, P64.Google Scholar
Dwyer, C. M., Madgwick, A. J. A., Ward, S. S. & Stickland, N. C. (1996). The effect of maternal undernutrition in early gestation on the development of fetal myofibres in the guinea pig. Reproduction, Fertility and Development (In the Press).Google Scholar
Dwyer, C. M. & Stickland, N. C. (1991). Sources of variation in myofibre number within and between litters of pigs. Animal Production 52, 527533.Google Scholar
Dwyer, C. M. & Stickland, N. C. (1992). The effects of maternal undernutrition on maternal and fetal serum insulin-like growth factors, thyroid-hormones and cortisol in the guinea-pig. Journal of Developmental Physiology 18, 303313.Google ScholarPubMed
Dwyer, C. M., Stickland, N. C. & Fletcher, J. M. (1994). The influence of maternal nutrition on muscle-fiber number development in the porcine fetus and on subsequent postnatal-growth. Journal of Animal Science 72, 911917.CrossRefGoogle ScholarPubMed
Florini, J. R. & Ewton, D. Z. (1992). Induction of gene expression in muscle by the IGFs. Growth Regulation 2, 2329.Google ScholarPubMed
Florini, J. R., Ewton, D. Z. & Roof, S. L. (1991). Insulin-like growth factor-I stimulates terminal myogenic differentiation by induction of myogenin gene expression. Molecular Endocrinology 5, 718724.CrossRefGoogle ScholarPubMed
García-Aragón, J., Lobie, P. E., Muscat, G. E. O., Gobius, K. S., Norstedt, G. & Waters, M. J. (1992). Prenatal expression of the growth hormone (GH) receptor/binding protein in the rat: a role for GH in embryonic and fetal development?. Development 114, 869876.CrossRefGoogle Scholar
Goldspink, G., Scutt, A., Loughna, P. T., Wells, D. J., Jaenicke, T. & Gerlach, G. F. (1992). Gene expression in skeletal muscle in response to stretch and force generation. American Journal of Physiology 262, R356R363.Google ScholarPubMed
Gundersen, K. & Merlie, J. P. (1994). Id-1 as a possible transcriptional mediator of muscle disuse atrophy. Proceedings of the National Academy of Sciences, USA 91, 36473651.CrossRefGoogle ScholarPubMed
Gunning, P. & Hardeman, E. (1991). Multiple mechanisms regulate muscle fiber diversity. FASEB Journal 5, 30643070.CrossRefGoogle ScholarPubMed
Haltia, M., Berlin, Ö., Schucht, H. & Sourander, P. (1978). Postnatal differentiation and growth of skeletal muscle fibres in normal and undernourished rats. Journal of the Neurological Sciences 36, 2539.CrossRefGoogle ScholarPubMed
Handel, S. E. & Stickland, N. C. (1987). The growth and differentiation of porcine skeletal muscle fibre types and the influence of birthweight. Journal of Anatomy 152, 107119.Google ScholarPubMed
Harrison, A. P., Clausen, T. & Dauncey, M. J. (1994). Cation pumps in skeletal muscle undergo dramatic up-regulation in the perinatal period. Proceedings of the Nutrition Society 53, 246A.Google Scholar
Harrison, A. P., Rowlerson, A. M. & Dauncey, M. J. (1996). Selective regulation of myofiber differentiation by energy status during postnatal development. American Journal of Physiology (In the Press).Google ScholarPubMed
Harrison, A. P., Tivey, D. R., Duchamp, C. & Dauncey, M. J. (1993). Neonatal hypothyroidism and its influence on contractile and metabolic properties of skeletal muscle. Journal of Endocrinology 139, P49.Google Scholar
Herpin, P. & Barré, H. (1989). Loose-coupled subsarcolemmal mitochondria from muscle rhomboideus in cold-acclimated piglets. Comparative Biochemistry and Physiology 92B, 5965.Google Scholar
Herpin, P., Berthon, D., Duchamp, C., Dauncey, M. J. & Le Dividich, J. (1996). Effect of thyroid status in the perinatal period on oxidative capacities and mitochondria respiration in porcine liver and skeletal muscle. Reproduction, Fertility and Development (In the Press).CrossRefGoogle ScholarPubMed
Hoffman, R. K., Lazar, M. A., Rubinstein, N. A. & Kelly, A. M. (1994). Differential expression of αl, α2, and β1 thyroid hormone receptor genes in developing rat skeletal muscle. Journal of Cell Biochemistry 18D, 517.Google Scholar
Hughes, S. M., Taylor, J. M., Tapscott, S. J., Gurley, C. M., Carter, W. J. & Peterson, C. A. (1993). Selective accumulation of MyoD and Myogenin mRNAs in fast and slow adult skeletal muscle is controlled by innervation and hormones. Development 118, 11371147.CrossRefGoogle ScholarPubMed
Iwaki, K., Sukhatme, V. P., Shubeita, H. E. & Chien, K. R. (1990). α-and β-Adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. Journal of Biological Chemistry 265, 1380913817.CrossRefGoogle ScholarPubMed
Izumo, S., Nadal-Ginard, B. & Mahdavi, V. (1986). All members of the MHC multigene family respond to thyroid hormone in a highly tissue-specific manner. Science 231, 597600.CrossRefGoogle Scholar
Kliewer, S. A., Umesono, K., Mangelsdorf, D. J. & Evans, R. M. (1992). Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 355, 446449.CrossRefGoogle ScholarPubMed
Kou, K. & Rotwein, P. (1993). Transcriptional activation of the insulin-like growth factor-II gene during myoblast differentiation. Molecular Endocrinology 7, 291302.Google ScholarPubMed
Lazar, M. A. (1993). Thyroid hormone receptors. Multiple forms, multiple possibilities. Endocrine Reviews 14, 184193.Google ScholarPubMed
Li, J., Saunders, J. C., Gilmour, R. S., Silver, M. & Fowcien, A. L. (1993). Insulin-like growth factor-II messenger ribonucleic acid expression in fetal tissues of the sheep during late gestation: effects of cortisol. Endocrinology 132, 20832089.CrossRefGoogle ScholarPubMed
Liggins, G. C. (1994). The role of cortisol in preparing the fetus for birth. Reproduction, Fertility and Development 6, 141150.CrossRefGoogle ScholarPubMed
Lyons, G. E., Ontell, M., Cox, R., Sassoon, D. & Buckingham, M. (1990). The expression of myosin genes in developing skeletal muscle in the mouse embryo. Journal of Cell Biology 111, 14651476.CrossRefGoogle ScholarPubMed
Mangelsdorf, D. J., Borgmeyer, U., Heyman, R. A., Zhou, J. Yang, Ong, S., Oro, A. E., Kakzuka, A. & Evans, R. M. (1992). Characterization of three RXR genes that mediate the action of 9-cis retinoic acid. Genes and Development 6, 329344.CrossRefGoogle ScholarPubMed
Mano, H., Mori, R., Ozawa, T., Takeyama, K., Yoshizawa, Y., Kojima, R., Arao, Y., Masushige, S. & Kato, S. (1994). Positive and negative regulation of retinoid X receptor gene expression by thyroid hormone in the rat. Journal of Biological Chemistry 269, 15911594.CrossRefGoogle ScholarPubMed
Mascarello, F., Stecchini, M. L., Rowlerson, A. & Ballocchi, E. (1992). Tertiary myotubes in postnatal growing pig muscle detected by their myosin isoform composition. Journal of Animal Science 70, 18061813.CrossRefGoogle ScholarPubMed
Miller, J. B. (1990). Myogenic programs of mouse muscle cell lines: expression of myosin heavy chain isoforms, MyoDl, and Myogenin. Journal of Cell Biology 111, 11491159.CrossRefGoogle ScholarPubMed
Millward, D. J., Jackson, A. A., Price, G. & Rivers, J. P. W. (1989). Human amino acid and protein requirements: current dilemmas and uncertainties. Nutrition Research Reviews 2, 109132.CrossRefGoogle ScholarPubMed
Morley, R. & Lucas, A. (1994). Influence of early diet on outcome in preterm infants. Acta Paediatrica 83, 123126.CrossRefGoogle Scholar
Muscat, G. E. O., Downes, M. & Dowhan, D. H. (1995). Regulation of vertebrate muscle differentiation by thyroid hormone: the role of the myoD gene family. BioEssays 17, 211218.CrossRefGoogle ScholarPubMed
Novakofski, J. & McCusker, R. H. (1993). Physiology and principles of muscle growth. In Growth of the Pig, pp. 3348 [Hollis, G. R., editors] Wallingford: CAB International.Google Scholar
Olson, E. N. (1993). Signal transduction pathways that regulate skeletal muscle gene expression. Molecular Endocrinology 7, 13691378.Google ScholarPubMed
Pette, D. & Staron, R. S. (1990). Cellular and molecular diversities of mammalian skeletal muscle fibers. Reviews in Physiology, Biochemistry and Pharmacology 116, 176.Google ScholarPubMed
Polla, B., Bottinelli, R., Sandoli, D., Sardi, C. & Reggiani, C. (1994). Cortisone-induced changes in myosin heavy chain distribution in respiratory and hindlimb muscles. Acta Pliysiologica Scandinavica 151, 353361.CrossRefGoogle ScholarPubMed
Rehfeldt, C., Fiedler, I., Weikard, R., Kanitz, E. & Ender, K. (1993). It is possible to increase skeletal muscle fibre number In utero. Bioscience Reports 13, 213220.CrossRefGoogle ScholarPubMed
Rhodes, S. J. & Konieczny, S. F. (1989). Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes and Development 3, 20502061.CrossRefGoogle ScholarPubMed
Ross, J. J., Duxson, M. J. & Harris, A. J. (1987). Neural determination of muscle fibre numbers in embryonic rat lumbrical muscles. Development 100, 395409.CrossRefGoogle ScholarPubMed
Rowlerson, A. (1994). An outline of fibre types in vertebrate skeletal muscle: histochemical identification and myosin isoforms. Basic and Applied Myology 4, 333352.Google Scholar
Rudnicki, M. A., Schnegelsberg, P. N. J., Stead, R. H., Braun, T., Arnold, H.-H. & Jaenisch, R. (1993). MyoD or Myf-5 is required in a functionally redundant manner for the formation of skeletal muscle. Cell 75, 13511359.CrossRefGoogle ScholarPubMed
Rutschmann, M., Dahlmann, B. & Reinauer, H. (1984). Loss of fast-twitch isomyosins in skeletal muscles of diabetic rat. Biochemical Journal 221, 645650.CrossRefGoogle ScholarPubMed
Schantz, P., Henriksson, J. & Jansson, E. (1983). Adaptation of human skeletal muscle to endurance training of long duration. Clinical Physiology 3, 141151.CrossRefGoogle ScholarPubMed
Schräder, M., Müller, K. M., Nayeri, S., Kahlen, J.-P. & Carlberg, C. (1994). Vitamin D3-thyroid hormone receptor heterodimer polarity directs ligand sensitivity of transactivation. Nature 370, 382386.CrossRefGoogle ScholarPubMed
Stickland, N. C., Widdowson, E. M. & Goldspink, G. (1975). Effects of severe energy and protein deficiencies on the fibres and nuclei in skeletal muscle of pigs. British Journal of Nutrition 34, 421428.CrossRefGoogle ScholarPubMed
Stockdale, F. E. (1992). Myogenic cell lineages. Developmental Biology 154, 284298.CrossRefGoogle ScholarPubMed
Symonds, M. E., Bird, J. A., Clarke, L., Gate, J. J. & Lomax, M. A. (1995). Nutrition, temperature and homeostasis during perinatal development. Experimental Physiology 80, 907940.CrossRefGoogle ScholarPubMed
Sutrave, P., Kelly, A. M. & Hughes, S. H. (1990). ski can cause selective growth of skeletal muscle in transgenic mice. Genes and Development 4, 14621472.CrossRefGoogle ScholarPubMed
Takeda, S., North, D. L., Lakich, M. M., Russell, S. D. & Whalen, R. G. (1992). A possible regulatory role for conserved promoter motifs in an adult-specific muscle myosin gene from mouse. Journal of Biological Chemistry 267, 1695716967.CrossRefGoogle Scholar
Waterlow, J. C. (1990). Mechanisms of adaptation to low energy intakes. In Diet and Disease in Traditional and Developing Societies, pp. 523 [Harrison, G. A. & Waterlow, J. C., editors] Cambridge: Cambridge University Press.Google Scholar
Weller, P. A., Dauncey, M. J., Bates, P. C., Brameld, J. M., Buttery, P. J. & Gilmour, R. S. (1994). Regulation of porcine insulin-like growth factor I and growth hormone receptor mRNA expression by energy status. American Journal of Physiology 266, E776E785.Google ScholarPubMed
White, P., Chang, K. C. & Dauncey, M. J. (1995). Role of energy intake in the differential expression of skeletal myosin heavy chain genes during growth. In Skeletal Muscle: Form and Function in Health and Disease, pp. 24London: The Wellcome Trust.Google Scholar
Wilson, S. J., McEwan, J. C., Sheard, P. W. & Harris, A. J. (1992). Early stages of myogenesis in c large mammal: formation of successive generations of myotubes in sheep tibialis cranialis muscle. Journal of Muscle Research and Cell Motility 13, 534550.CrossRefGoogle Scholar
Wilson, S. J., Ross, J. J. & Harris, A. J. (1988). A critical period for formation of secondary myotubes defined by prenatal undernourishment in rats. Development 102, 815821.CrossRefGoogle ScholarPubMed