Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T17:26:16.974Z Has data issue: false hasContentIssue false

Regulation of hepatic nitrogen metabolism in ruminants

Published online by Cambridge University Press:  28 February 2007

G. E. Lobley
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB
G. D. Milano
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB21 9SB
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Regulation of nitrogen retention in farm animals’
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Abbott, E. M., Parkins, J. J. & Holmes, P. H. (1985). Influence of dietary protein on the pathophysiology of ovine haemonchosis in Finn Dorset and Scottish Blackface lambs given a single moderate infection. Research in Veterinary Science 38, 5460.CrossRefGoogle Scholar
Attaix, D., Aurousseau, E., Bayle, G., Manghebati, A. & Arnal, M. (1987). Protein synthesis and degradation in growing lambs. In Protein Metabolism and Nutrition. European Association for Animal Production Publication, no. 35, pp. 2425 [Lehman, J., editor]. Rostock, Germany: Wilhelm-Pieck University.Google Scholar
Burrin, D. G., Ferrell, C. L., Britton, R. A. & Bauer, M. (1990). Level of nutrition and visceral organ size and metabolic activity in sheep. British Journal of Nutrition 64, 439448.CrossRefGoogle ScholarPubMed
Cathelineau, L., Petit, F. P., Coudé, F. X. & Kamoun, P. P. (1979). Effect of propionate and pyruvate on citrulline synthesis and ATP content in rat liver mitochondria. Biochemical and Biophysical Research Communications 90, 327332.CrossRefGoogle ScholarPubMed
Christensen, H. N. (1990). Role of amino acid transport and countertransport in nutrition and metabolism. Physiological Reviews 70, 4377.CrossRefGoogle ScholarPubMed
Cohen, N. S. & Kuda, A. (1996). Arginosuccinate synthetase and arginosuccinate lyase are localized around mitochondria: an immunocytochemical study. Journal of Cellular Biochemistry 60, 334340.3.0.CO;2-X>CrossRefGoogle Scholar
Connell, A., Calder, A. G., Anderson, S. E. & Lobley, G. E. (1997). Hepatic protein synthesis in the sheep: effect of intake as monitored by use of stable-isotope-labelled glycine, leucine and phenylalanine. British Journal of Nutrition 77, 255271.CrossRefGoogle ScholarPubMed
Crompton, L. A. & Dawson, J. M. (1997). Nutritional control of muscle protein turnover in ruminants. Proceedings of the Nutrition Society 56, (In the Press).Google Scholar
Demigné, C., Yacoub, C., Morand, C. & Rémésy, C. (1991). Interactions between propionate and amino acid metabolism in isolated sheep hepatocytes. British Journal of Nutrition 65, 301317.CrossRefGoogle ScholarPubMed
Garwacki, S., Wiechetek, M., Karlik, W., Souffrant, W.-B. & Krawielitzki, K. (1990). Effect of propionate on the utilization of nitrogen from 15NH4Cl for urea synthesis in hepatocytes isolated from sheep liver. International Journal of Biochemistry 22, 11851188.CrossRefGoogle ScholarPubMed
Häussinger, D. (1990). Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochemical Journal 267, 281290.CrossRefGoogle ScholarPubMed
Häussinger, D., Hallbrucker, C., Saha, N., Lang, F. & Gerok, W. (1991). Cell volume is a major determinant of proteolysis control in liver. FEBS Letters 283, 7072.CrossRefGoogle Scholar
Häussinger, D., Lamers, W. H. & Moorman, A. F. M. (1992 a). Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46, 7293.CrossRefGoogle Scholar
Häussinger, D., Lang, F., Bauers, K. & Gerok, W. (1990). Interactions between glutamine metabolism and cell volume regulation in perfused rat liver. European Journal of Biochemistry 188, 689695.CrossRefGoogle ScholarPubMed
Häussinger, D., Lang, F. & Gerok, W. (1994). Regulation of cell function by the cellular hydration state. American Journal of Physiology 267, E343E355.Google ScholarPubMed
Häussinger, D., Stoll, B., Morimoto, Y., Lang, F. & Gerok, W. (1992 b). Anisoosmotic liver perfusion: redox shifts and modulation of α-ketoisocaproate and glycine metabolism. Biological Chemistry Hoppe-Seyler 373, 723734.CrossRefGoogle ScholarPubMed
Hensgens, H. E. S. J., Verhoeven, A. J. & Meijer, A. J. (1980). The relationship between intramitochondrial N-acetylglutamate and activity of carbamoyl-phosphate synthetase (ammonia). The effect of glucagon. European Journal of Biochemistry 107, 197205.CrossRefGoogle ScholarPubMed
Hesketh, J. (1994). Translation and the cytoskeleton: a mechanism for targeted protein synthesis. Molecular Biology Reports 19, 233243.CrossRefGoogle ScholarPubMed
Hunter, K. A., Ballmer, P. E., Anderson, S. E., Broom, J., Garlick, P. J. & McNurlan, M. A. (1995). Acute stimulation of albumin synthesis rate with oral meal feeding in healthy subjects measured with [ring-2H5] phenylalanine. Clinical Science 88, 235242.CrossRefGoogle ScholarPubMed
Karasik, A., Rothenberg, P. L., Yamada, K., White, M. F. & Kahn, C. R. (1990). Increased protein kinase C activity is linked to reduced receptor autophosphorylation in liver of starved rats. Journal of Biological Chemistry 265, 1022610231.CrossRefGoogle ScholarPubMed
Lobley, G. E. (1992). Control of the metabolic fate of amino acids in ruminants: a review. Journal of Animal Science 70, 32643275.CrossRefGoogle ScholarPubMed
Lobley, G. E., Connell, A., Lomax, M. A., Brown, D. S., Milne, E., Calder, A. G. & Farningham, D. A. H. (1995). Hepatic detoxification of ammonia in the ovine liver: possible consequences for amino acid catabolism. British Journal of Nutrition 73, 667685.CrossRefGoogle ScholarPubMed
Lobley, G. E., Connell, A., Milne, E., Newman, A. M. & Ewing, T. A. (1994). Protein synthesis in splanchnic tissues of sheep offered two levels of intake. British Journal of Nutrition 71, 312.CrossRefGoogle ScholarPubMed
Lobley, G. E., Weijs, P. J. M., Connell, A., Calder, A. G., Brown, D. S. & Milne, E. (1996). The fate of absorbed and exogenous ammonia as influenced by forage or forage-concentrate diets in growing sheep. British Journal of Nutrition 76, 231248.CrossRefGoogle ScholarPubMed
Luiken, J. J. F. P., Aerts, J. M. F. G. & Meijer, A. J. (1996). The role of intralysosomal pH in the control of autophagic proteolytic flux in rat hepatocytes. European Journal of Biochemistry 235, 564573.CrossRefGoogle ScholarPubMed
Luiken, J. J. F. P., Blommaart, E. F. C., Boon, L., van Woerkom, G. M. & Meijer, A. J. (1994). Cell swelling and the control of autophagic proteolysis in hepatocytes: involvement of phosphorylation of ribosomal protein S6? Biochemical Society Transactions 22, 508511.CrossRefGoogle ScholarPubMed
Luo, Q. J., Maltby, S. A., Lobley, G. E., Calder, A. G. & Lomax, M. A. (1995). The effect of amino acids on the metabolic fate of 15NH4C1 in isolated sheep hepatocytes. European Journal of Biochemistry 228, 912917.CrossRefGoogle ScholarPubMed
Mcgivan, J. D. (1992). Techniques used in the study of plasma membrane amino acid transport. In Mammalian amino acid transport. Mechanisms and control, pp. 5163 [Kilberg, M. S. and Häussinger, D., editors]. New york: Plenum press.CrossRefGoogle Scholar
MacRae, J. C. & Reeds, P. J. (1980). Prediction of protein deposition in ruminants. In Protein deposition in animals, pp. 225249 [Buttery, P. J. and Lindsay, D. B., editors]. London: Butterworths.CrossRefGoogle Scholar
Meijer, A. J., Lamers, W. H. & Chamuleau, R. A. F. M. (1990). Nitrogen metabolism and ornithine cycle function. Physiological Reviews 70, 701748.CrossRefGoogle ScholarPubMed
Meijer, A. J., Lof, C., Ramos, I. C. & Verhoeven, A. J. (1985). Control of ureogenesis. European Journal of Biochemistry 148, 189196.CrossRefGoogle ScholarPubMed
Mortimore, G. E. & Pösö, A. R. (1987). Intracellular protein catabolism and its control during nutrient deprivation and supply. Annual Review of Nutrition 7, 539564.CrossRefGoogle ScholarPubMed
Mutsvangwa, T., Buchanan-Smith, J. G. & McBride, B. W. (1995). Interactions between ruminal degradable nitrogen intake and in vitro addition of substrates on patterns of amino acid metabolism in isolated ovine hepatocytes. Journal of Nutrition 126, 209218.CrossRefGoogle Scholar
Nieto, R., Calder, A. G., Anderson, S. E. & Lobley, G. E. (1996). Method for the determination of 15NH3 enrichment in biological samples by gas chromatography/electron impact ionization mass spectrometry. Journal of Mass Spectrometry 31, 289294.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Orzechowski, A. & Motyl, T. (1989). Metabolism of propionate and ammonia in isolated sheep liver mitochondria. Journal of Animal Physiology and Animal Nutrition 61, 918.CrossRefGoogle Scholar
Orzechowski, A., Motyl, T., Pierznowski, G. & Barej, W. (1987). Hepatic capacity for ammonia removal in sheep. Journal of Veterinary Medicine 34A, 108112.CrossRefGoogle Scholar
Orzechowski, A., Pierzynowski, S., Motyl, T. & Barej, W. (1988). Net hepatic metabolism of ammonia, propionate and lactate in sheep in relation to gluconeogenesis and ureagenesis. Journal of Animal Physiology and Animal Nutrition 59, 113122.CrossRefGoogle Scholar
Owczarczyk, B. & Barej, W. (1975). The different activities of arginase, arginine synthetase, ornithine transcarbamoylase and δ-ornithine transaminase in the liver and blood cells of some farm animals. Comparative Biochemistry and Physiology 50B, 555558.Google Scholar
Quillard, M., Husson, A. & Lavoinne, A. (1996). Glutamine increases arginosuccinate synthetase mRNA levels in rat hepatocytes. The involvement of cell swelling. European Journal of Biochemistry 236, 5659.CrossRefGoogle Scholar
Rattenbury, J. M., Kenwright, A. M., Withers, C. J. & Shepherd, D. A. L. (1983). Effect of propionic acid on urea synthesis by sheep liver. Research in Veterinary Science 35, 6163.CrossRefGoogle ScholarPubMed
Reaich, D., Channon, S. M., Scrimgeour, C. M. & Goodship, T. H. J. (1992). Ammonium chloride-induced acidosis increases protein breakdown and amino acid oxidation in humans. American Journal of Physiology 263, E735E739.Google ScholarPubMed
Rérat, A., Simoes-Nuñes, C., Mendy, F., Vaissaide, P. & Vaugelade, P. (1992). Splanchnic fluxes of amino acids after duodenal infusion of carbohydrate solutions containing free amino acids or oligopeptides in the non-anaesthetized pig. British Journal of Nutrition 68, 111138.CrossRefGoogle ScholarPubMed
Reynolds, C. K. (1992). Metabolism of nitrogenous compounds by ruminant liver. Journal of Nutrition 122, 850854.CrossRefGoogle ScholarPubMed
Reynolds, C. K., Tyrrell, H. F. & Reynolds, P. J. (1991). Effects of diet forage-to-concentrate ratio and intake on energy metabolism in growing beef heifers: whole body energy and nitrogen balance and visceral heat production. Journal of Nutrition 121, 9941003.CrossRefGoogle ScholarPubMed
Richardson, T. C., Jeacock, M. J. & Shepherd, D. A. L. (1982). The effect of implantation of anabolic steroids into suckling and ruminating lambs on the metabolism of alanine in livers perfused in the presence or absence of volatile fatty acids. Journal of Agricultural Science, Cambridge 99, 391401.CrossRefGoogle Scholar
Schliess, F., Schreiber, R. & Häussinger, D. (1995). Activation of extracellular signal-regulated kinases Erk-1 and Erk-2 by cell swelling in H4IIE hepatoma cells. Biochemical Journal 309, 1317.CrossRefGoogle ScholarPubMed
Stewart, P. M. & Walser, M. (1980). Failure of the normal ureagenic response to amino acids in the organic-acid loaded rat: a proposed mechanism for the hyperammonemia of propionic and methylmalonic acidemia. Journal of Clinical Investigation 66, 484492.CrossRefGoogle Scholar
Stoll, B., Gerok, W., Lang, F. & Häussinger, D. (1992). Liver cell volume and protein synthesis. Biochemical Journal 287, 217222.CrossRefGoogle ScholarPubMed
Stoll, B., McNelly, S., Buscher, H. P. & Häussinger, D. (1991). Functional hepatocyte heterogeneity in glutamate, aspartate and α-ketoglutarate uptake: a histoautoradiographical study. Hepatology 13, 247253.CrossRefGoogle ScholarPubMed
Storm, E. & Ørskov, E. R. (1984). The nutritive value of rumen micro-organisms in ruminants. 4. The limiting amino acids of microbial protein in growing sheep determined by a new approach. British Journal of Nutrition 52, 613620.CrossRefGoogle ScholarPubMed
Symonds, H., Denise, W., Mather, L. & Collins, K. A. (1981). The maximum capacity of the bovine liver to metabolize ammonia. Proceedings of the Nutrition Society 40, 63A.Google Scholar
Verhoeven, A. J., Hensgens, E. S. J., Meijer, A. J. & Tager, J. M. (1982). On the nature of the stimulation by glucagon of citrulline synthesis in rat-liver mitochondria. FEBS Letters 140, 270272.CrossRefGoogle ScholarPubMed
vom Dahl, S., Hallbrucker, C., Lang, F., Gerok, W. & Häussinger, D. (1991). Regulation of cell volume in the perfused rat liver by hormones. Biochemical Journal 280, 105109.CrossRefGoogle ScholarPubMed
vom Dahl, S. & Häussinger, D. (1996). Nutritional state and the swelling-induced inhibition of proteolysis in perfused rat liver. Journal of Nutrition 126, 395402.CrossRefGoogle ScholarPubMed
vom Dahl, S., Stoll, B., Gerok, W. & Häussinger, D. (1995). Inhibition of proteolysis by cell swelling in the liver requires intact microtubular structures. Biochemical Journal 308, 529536.CrossRefGoogle ScholarPubMed
Wilton, J. C., Gill, M. & Lomax, M. A. (1988). Uptake of ammonia across the liver of forage-fed cattle. Proceedings of the Nutrition Society 47, 153A.Google Scholar
Wolff, J. E. & Bergman, E. N. (1972). Gluconeogenesis from plasma amino acids in fed sheep. American Journal of Physiology 223, 455460.CrossRefGoogle ScholarPubMed