Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T16:10:51.762Z Has data issue: false hasContentIssue false

Regulation of hepatic glucose metabolism by insulin and counter-regulatory hormones

Published online by Cambridge University Press:  28 February 2007

Keith Snell
Affiliation:
Receptors and Cellular Regulation Group, School of Biological Sciences, University of Surrey, Guildford GU2 5XH
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1991

References

Aprille, J. R. & Nosek, M. T. (1987). Neonatal hypoxia or maternal diabetes delays postnatal development of liver mitochondria. Pediatric Researc 21, 266269.CrossRefGoogle ScholarPubMed
Blair, J. B., James, M. E. & Foster, J. L. (1979). Adrenergic control of glucose output and adenosine 3', 5'-monophosphate levels in hepatocytes from juvenile and adult rats. Journal of Biological Chemistry 254, 75797584.CrossRefGoogle ScholarPubMed
Burnol, A. F., Leturque, A., Ferré, P. & Girard, J. (1983). Glucose metabolism during lactation in the rat: Quantitative and regulatory aspects. American Journal of Physiology 245, 75797584.Google ScholarPubMed
Butlen, D., Guillon, C., Cantau, B. & Jard, S. (1980). Comparison of the developmental patterns of vasopressin, glucagon and α-adrenergic receptors from rat liver membranes. Molecular Cell Endocrinology 19, 275289.CrossRefGoogle ScholarPubMed
Clegg, R. A. & Mullaney, I. (1985). Acute changes in the cyclic AMP content of rat mammary acini in vitro. Biochemical Journal 230, 239246.CrossRefGoogle ScholarPubMed
Cryer, P. E. (1981). Glucose counterregulation in man. Diabetes 30, 261264.CrossRefGoogle ScholarPubMed
Cuezva, J. M., Burkett, E. S., Kerr, D. S., Rodman, H. & Patel, M. S. (1982). The newborn of diabetic rat. 1. Hormonal and metabolic changes in the postnatal period. Pediatric Research 16, 632637.CrossRefGoogle Scholar
Cuezva, J. M. & Patel, M. S. (1983). Plasma catecholamine concentrations in the newborn rat during the first six postnatal hours. Biochemical Society Transactions 10, 521.CrossRefGoogle Scholar
Duerden, J. M. & Gibbons, G. F. (1990). Storage, mobilization and secretion of cytosolic triacylglycerol in hepatocyte cultures. The role of insulin. Biochemical Journal 272, 583588.CrossRefGoogle ScholarPubMed
Dunphy, A. M., Clegg, R. A. & Snell, K. (1989). Characterisation of rat liver β-adrenoceptors during lactation. Biochemical Society Transactions 17, 10981099.CrossRefGoogle ScholarPubMed
Gerich, J., Cryer, P. E. & Rizza, R. (1980). Hormonal mechanisms in acute glucose counterregulation: the relative roles of glucagon, epinephrine, norepinephrine, growth hormone and cortisol. Metabolism 29, 11641175.CrossRefGoogle Scholar
Girard, J. R., Cuendet, G. S., Marliss, E. B., Kervran, A., Rieutort, M. & Assan, R. (1973). Fuels, hormones, and liver metabolism at term and during the early postnatal period in the rat. Journal of Clinical Investigation 52, 31903200.CrossRefGoogle ScholarPubMed
Klein, H. H., Matthaei, S., Drenkhan, M., Ries, W. & Scriba, P. C. (1991). The relationship between insulin binding, insulin activation of insulin-receptor tyrosine kinase, and insulin stimulation of glucose uptake in isolated rat adipocytes. Biochemical Journal 274, 787792.CrossRefGoogle ScholarPubMed
Mor, M. A., Vila, J., Ciudad, C. J. & Guinovart, J. J. (1981). Insulin inactivation of rat hepatocyte cyclic AMP-dependent protein kinase. FEBS Letters 136, 131134.Google ScholarPubMed
Pingoud, V. A., Peters, F., Haas, T. D. U. & Trautschold, I. (1982). A quantitative analysis of glucagon binding to isolated intact neonatal and adult rat hepatocytes on the basis of two different binding models. Biochimica et Biophysica Acta 714, 448455.CrossRefGoogle ScholarPubMed
Robinson, A. M., Girard, J. R. & Williamson, D. H. (1978). Evidence for a role of insulin in the regulation of lipogenesis in lactating rat mammary gland. Biochemical Journal 176, 343346.CrossRefGoogle ScholarPubMed
Snell, K. (1981). Glucose turnover in the newborn rat. In Metabolic Adaptation to Extrauterine Life. pp. 81105 [de Meyer, R., editor]. The Hague: Martinus Nijhoff Publishers.CrossRefGoogle Scholar
Snell, K. & Evans, C. A. (1987). Isolation of fetal and neonatal rat hepatocytes. In Biochemical Toxicology: A Practical Approach. pp. 8083 [Snell, K. and Mullock, B., editors]. Oxford: IRL Press.Google Scholar
Snell, K. & Evans, C. A. (1988). Characterization of rat liver β-adrenoceptors during perinatal development as determined bxy [125L]-iodopindolol radioligand binding assays. British Journal of Pharmacology 93, 817826.CrossRefGoogle Scholar
Snell, K. & Walker, D. G. (1973 a). Glucose metabolism in the newborn rat: temporal studies in vivo. Biochemical Journa 132, 739752.CrossRefGoogle ScholarPubMed
Snell, K. & Walker, D. G. (1973 b). Glucose metabolism in the newborn rat: hormonal effects in vivo. Biochemical Journa 134, 899906.CrossRefGoogle ScholarPubMed
Snell, K. & Walker, D. G. (1978). Glucose metabolism in the newborn rat: the role of insulin. Diabetologia 14, 5964.CrossRefGoogle ScholarPubMed
Sperling, M. A., Ganguli, S., Leslie, N. & Landt, K. (1984). Fetal-perinatal catecholamine secretion: role in perinatal glucose homeostasis. American Journal of Physiology 247, E69E74.Google ScholarPubMed
Williamson, D. H. (1980). Integration of metabolism in tissues of the lactating rat. FEBS Letters 117, K93K105.CrossRefGoogle ScholarPubMed