Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T09:45:52.051Z Has data issue: false hasContentIssue false

Regulation of gut glutamine metabolism: role of hormones and cytokines

Published online by Cambridge University Press:  28 February 2007

Naji N. Abumrad
Affiliation:
Department of Surgery, State University of New York, Stony Brook, NY 11794–8191, USA
Soojin Kim
Affiliation:
Department of Surgery, State University of New York, Stony Brook, NY 11794–8191, USA
Patricia E. Molina
Affiliation:
Department of Surgery, State University of New York, Stony Brook, NY 11794–8191, USA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Nitrogen transactions in the gut’
Copyright
Copyright © The Nutrition Society 1995

References

Abumrad, N. N., Jefferson, L. S., Rannels, S. R., Williams, P. E., Cherrington, A. D. & Lacy, W. W. (1982). Role of insulin in the regulation of leucine kinetics in the conscious dog. Journal of Clinical Investigation 70, 10311041.CrossRefGoogle ScholarPubMed
Addae, S. K. & Lotspeich, W. D. (1968). Relation between glutamine utilization and production in metabolic acidosis. American Journal of Physiology 215, 269277.CrossRefGoogle ScholarPubMed
Ardawi, M. S. M. & Newsholme, E. A. (1985). Fuel utilization in colonocytes of the rat. Biochemical Journal 231, 713719.Google Scholar
Ashy, A. A. & Ardawi, M. S. M. (1988). Glucose, glutamine and ketone body metabolism in human enterocytes. Metabolism 37, 602609.Google Scholar
Cersosimo, E., Williams, P. E., Radosevich, P. M., Hoxworth, B. T., Lacy, W. W. & Abumrad, N. N. (1986). Role of glutamine in adaptations in nitrogen metabolism during fasting. American Journal of Physiology 250, E622E628.Google ScholarPubMed
Felig, P., Wahren, J., Karl, I., Cerasi, F., Luft, R. & Kipnis, D. M. (1973). Glutamine and glutamate metabolism in normal and diabetic subjects. Diabetes 22, 573576.CrossRefGoogle ScholarPubMed
Fukushima, R., Saito, I. I., Taniwaka, K., Hiramatu, T., Morioka, Y. & Abumrad, N. N. (1992). Different roles of IL-1 and TNF on hemodynamics and inter-organ amino acids metabolism in awake dogs. American Journal of Physiology 262, E275-E281.Google Scholar
Geer, R. J., Williams, P. E., Lairmore, T. & Abumrad, N. N. (1987). Glucagon: An important stimulator of gut and hepatic glutamine metabolism. Surgical Forum 38, 2729.Google Scholar
Hourani, H., Lacy, D. B., Nammour, T. M., Abumrad, N. N. & Morris, J. A. (1990). Differential effects of alpha and beta adrenergic blockade on glucose and lactate metabolism during acute stress. Journal of Trauma 30, 11161124.CrossRefGoogle ScholarPubMed
Hourani, H., Williams, P. E., Morris, J. A., May, M. E. & Abumrad, N. N. (1990). Effect of insulin-induced hypoglycemia on protein metabolism in vivo. American Journal of Physiology 259, E342E350.Google ScholarPubMed
McCallister, B., Miller, B. M., Lacy, W. W., McRae, J. & Abumrad, N. N. (1983). The effect of acute and chronic glucocorticoid excess on leucine kinetics and on protein turnover in vivo. Journal of Surgical Research 35, 426432.Google Scholar
Marliss, E., Aoki, T. T., Pozefsky, T., Most, A. S. & Cahill, G. F. Jr (1971). Muscle and splanchnic glutamine and glutamate metabolism in post-absorptive and starved man. Journal of Clinical Investigation 50, 814817.Google Scholar
Miller, B. M., Cersosimo, E., McRae, J., Williams, P. E., Lacy, W. W. & Abumrad, N. N. (1983). Inter-organ relationships of alanine and glutamine during fasting in the conscious dog. Journal of Surgical Research 35, 310318.CrossRefGoogle Scholar
Miller, B., Hoxworth, B., Buckspan, R., Nanney, L., Lacy, W. W. & Abumrad, N. N. (1984). Leupeptin's effect on organ weight, RNA, DNA, and protein content after long bone fracture in the rat. Journal of Surgical Research 36, 453461.CrossRefGoogle ScholarPubMed
Molina, P. E. & Abumrad, N. N. (1994 a). Gut-derived proteolysis during insulin-induced hypoglycemia: the pain that breaks down the gut. Journal of Parenteral and Enteral Nutrition 18, 549556.CrossRefGoogle ScholarPubMed
Molina, P. E. & Abumrad, N. N. (1994 b). Hypothalamus, glucopenia and fuel mobilization. In Organ Metabolism and Nutrition: Ideas for Future Critical Care, pp. 6990 [Kinney, J. M. and Tucker, H. N. editors]. New York: Raven Press.Google Scholar
Molina, P. E., El Tayeb, H., Hourani, H., Okamura, K., Nanney, L. B., Williams, P. & Abumrad, N. N. (1993). Hormonal and metabolic effects of neuroglucopenia. Brain Research 614, 99108.Google Scholar
Mommsen, T. P. & Walsh, P. J. (1989). Evolution of urea synthesis in vertebrates. The piscine connection. Science 243, 7275.CrossRefGoogle ScholarPubMed
Neptune, E. M. & Mitchell, T. G. (1964). Sodium and water transport by the everted rabbit intestinal sac. Federation Proceedings 23, 152 Abstr.Google Scholar
Newsholme, E. A., Crabtree, B. & Ardawi, M. S. M. (1985). The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Bioscience Reports 5, 393400.Google Scholar
Newsholme, E. A., Newsholme, P., Curi, R., Challoner, E. & Ardawi, M. S. M. (1988). A role for muscle in the immune system and its importance in surgery, trauma, sepsis and burns. Nutrition 4, 261268.Google Scholar
Pinkus, L. M. & Windmueller, H. G. (1977). Phosphate-dependent glutaminase of small intestine: localization and role in intestinal glutamine metabolism. Archives of Biochemistry and Biophysics 182, 506517.CrossRefGoogle ScholarPubMed
Rapaport, S., Rost, J. & Shultz, M. (1970). On the metabolic regulation of glycolysis in erythrocytes. Bulletin of the Society of Clinical Biology 52, 11691186.Google Scholar
Souba, W., Smith, R. J. & Wilmore, D. W. (1985). Glutamine metabolism by the intestinal tract. Journal of Parenteral and Enteral Nutrition 9, 608617.CrossRefGoogle ScholarPubMed
Wasserman, D. H., Geer, R. J., Rice, D. E., Tracy, D., Flakoll, P. J., Brown, L. L., Hill, J. O. & Abumrad, N. N. (1991). Interaction of exercise and insulin action in man. American Journal of Physiology 260, E37E45.Google Scholar
Wasserman, D. H., Geer, R. J., Williams, P. E., Becker, T., Lacy, D. B. & Abumrad, N. N. (1991). Interaction of gut and liver in nitrogen metabolism during exercise. Metabolism 40, 307314.Google Scholar
Wasserman, D. H., Lacy, D. B., Goldstein, R. E. & Cherrington, A. D. (1989). Exercise-induced fall in insulin and hepatic carbohydrate metabolism during exercise. American Journal of Physiology 256, E500E508.Google Scholar
Wasserman, D. H., Spalding, J. S., Lacy, D. B., Colburn, C. A., Goldstein, R. E. & Cherrington, A. D. (1989). Glucagon is a primary controller of the increments in hepatic glycogenolysis and gluconeogenesis during muscular work. American Journal of Physiology 257, E108E117.Google Scholar
Welbourne, T. C. (1987). Inter-organ glutamine flow in metabolic acidosis. American Journal of Physiology 253, F1069F1076.Google Scholar
Williams, P. E., Flakoll, P. J., Prexes-Steed, M. & Abumrad, N. N. (1992). Surgical models to measure organ amino acid metabolism. In Modern Methods in Protein Nutrition and Metabolism, pp. 167194 [Nissen, S. editor]. San Diego, CA: Academic Press.CrossRefGoogle Scholar
Windmueller, H. G (1982). Glutamine utilization by the small intestine. Advances in Enzymology 53, 201215.Google ScholarPubMed
Windmueller, H. G. & Spaeth, A. E. (1974). Uptake and metabolism of plasma glutamine by the small intestine. Journal of Biological Chemistry 249, 50705079.Google Scholar
Windmueller, H. G. & Spaeth, A. E. (1975). Intestinal metabolism of glutamine and glutamate from the lumen as compared to glutamine from blood. Archives of Biochemistry and Biophysics 171, 662672.CrossRefGoogle ScholarPubMed