Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-22T09:48:06.978Z Has data issue: false hasContentIssue false

Postprandial lipid metabolism and thrombosis

Published online by Cambridge University Press:  28 February 2007

G. J. Miller
Affiliation:
MRC Epidemiology and Medical Care Unit, Wolfson Institute of Preventive Medicine, St Bartholomew's and the Royal London School of Medicine and Dentistry, Charterhouse Square, London EClM 6BQ
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Bauer, K. A. & Rosenberg, R. D. (1987). The pathophysiology of the prethrombotic state in humans: insights gained from studies using markers of hemostatic system activation. Blood 70, 345350.CrossRefGoogle Scholar
Bladbjerg, E. M., Marckmann, P., Sandstrom, B. & Jespersen, J. (1994). Non-fasting factor VII coagulant activity (FVII:c) increased by high-fat diet. Thrombosis and Haemostasis 71, 755758.Google Scholar
Bruckert, E., Carvalho de Sousa, J., Giral, P., Soria, C., Chapman, M. J., Caen, J. & de Gennes, J.-L. (1989). Interrelationship of plasma triglyceride and coagulant factor VII levels in normotriglyceridemic hypercholesterolemia. Atherosclerosis 75, 129134.CrossRefGoogle ScholarPubMed
Chalmers, T. V., Matta, R. J., Smith, H. & Kunzler, A.-M. (1977). Evidence favouring the use of anticoagulants in the hospital phase of acute myocardial infarction. New England Journal of Medicine 297, 10911096.CrossRefGoogle ScholarPubMed
Constantino, M., Merskey, C., Kudzma, D. J. & Zucker, M. B. (1977). Increased activity of vitamin K-dependent clotting factors in human hyperlipoproteinaemia-association with cholesterol and triglyceride levels. Thrombosis and Haemostasis 38, 465474.Google ScholarPubMed
Davies, M. J. (1996). The contribution of thrombosis to the clinical expression of coronary atherosclerosis. Thrombosis Research 82, 132.Google Scholar
Davies, M. J. & Thomas, A. (1984). Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. New England Journal of Medicine 310, 11341140.CrossRefGoogle ScholarPubMed
De Wood, M. A., Spores, J., Notske, R., Mouser, L. T., Burroughs, R., Golden, M. S. & Lang, H. T. (1980). Prevalence of total coronary occlusion during the early hours of transmural myocardial infarction. New England Journal of Medicine 303, 897902.CrossRefGoogle ScholarPubMed
Elkeles, R. S., Chakrabarti, R., Vickers, M., Stirling, Y. & Meade, T. W. (1980). Effect of treatment of hyperlipidaemia on haemostatic variables. British Medical Journal 281, 973974.CrossRefGoogle ScholarPubMed
Fuller, J. H., Keen, H., Jarrett, R. J., Omer, T. & Meade, T. W. (1979). Haemostatic variables associated with diabetes and its complications. British Medical Journal 2, 964966.CrossRefGoogle ScholarPubMed
Fuster, V. & Chesebro, J. H. (1986). Mechanism of unstable angina. New England Journal of Medicine 315, 10231025.CrossRefGoogle ScholarPubMed
Gnecchi-Ruscone, T., Piccaluga, E., Guzzetti, S., Contini, M., Montano, N. & Nicolis, E. on behalf of the GISSI-2 Investigators (1994). Morning and Monday: critical periods for the onset of acute myocardial infarction. European Heart Journal 15, 882887.Google Scholar
Grundy, S. M., Greenland, P., Herd, A., Huebsch, J. A., Jones, R. J., Mitchell, J. H. & Schlant, R. C. (1987). Cardiovascular and risk factor evaluation of healthy American adults. A statement for physicians by an Ad HOC Committee appointed by the Steering Committee, American Heart Association. Circulation 75, 1340A1362A.Google Scholar
Gurfinkel, E., Altman, R., Scazziota, A., Rouvier, J. & Mautner, B. (1994). Importance of thrombosis and thrombolysis in silent ischaemia: comparison of patients with acute myocardial infarction and unstable angina. British Heart Journal 71, 151155.CrossRefGoogle ScholarPubMed
Heinrich, J., Balleisen, L., Schulte, H., Assmann, G. & van de Loo, J. (1994). Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arteriosclerosis & Thrombosis 14, 5459.CrossRefGoogle ScholarPubMed
International Anticoagulant Review Group (1970). Collaborative analysis of long-term anticoagulant administration after acute myocardial infarction. Lancet, 1 203209.Google Scholar
Macfarlane, R. G. (1964). An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier. Nature 202, 498499.CrossRefGoogle ScholarPubMed
McNally, T., Mackie, I. J., Isenberg, D. A. & Machin, S. J. (1996). β2 glycoprotein-I inhibits factor XII activation on triglyceride rich lipoproteins: the effect of antibodies from plasma of patients with antiphospholipid syndrome. Thrombosis and Haemostasis 76, 220225.Google Scholar
Marckmann, P., Sandström, B. & Jespersen, J. (1993). Dietary effects on circadian fluctuation in human blood coagulation factor VII and fibrinolysis. Atherosclerosis 101, 225234.Google Scholar
Miller, G. J., Martin, J. C., Mitropoulos, K. A., Esnouf, M. P., Cooper, J. A., Morrissey, J. H., Howarth, D. J. & Tuddenham, E. G. D. (1996). Activation of factor VII during alimentary lipemia occurs in healthy adults and patients with congenital factor XII or factor XI deficiency, but not in patients with factor IX deficiency. Blood 87, 41874196.Google Scholar
Miller, G. J., Martin, J. C., Mitropoulos, K. A., Reeves, B. E. A., Thompson, R. L., Meade, T. W., Cooper, J. A. & Cruickshank, J. K. (1991). Plasma factor VII is activated by postprandial triglyceridaemia, irrespective of dietary fat composition. Atherosclerosis 86, 163171.CrossRefGoogle ScholarPubMed
Miller, G. J., Martin, J. C., Webster, J., Wilkes, H., Miller, N. E., Wilkinson, W. H. & Meade, T. W. (1986). Association between dietary fat intake and plasma factor VII coagulant activity — a predictor of cardiovascular mortality. Atherosclerosis 60, 269277.Google Scholar
Miller, G. J., Stirling, Y., Esnouf, M. P., Heinrich, J., van de Loo, J., Keinast, J., Wu, K. K., Momssey, J. H., Meade, T. W., Martin, J. C., Imeson, J. D., Cooper, J. A. & Finch, A. (1994). Factor VII-deficient substrate plasmas depleted of protein C raise the sensitivity of the factor VII bio-assay to activated factor VII: an international study. Thrombosis and Haemostasis 71, 3848.Google ScholarPubMed
Miller, G. J., Walter, S. J., Stirling, Y., Thompson, S. G. & Esnouf, M. P. (1985). Assay of factor VII activity by two techniques: evidence for increased conversion of VII to αVIIa, in hyperlipidaemia, with possible implications for ischaemic heart disease. British Journal of Haematology 59, 249258.CrossRefGoogle Scholar
Mitropoulos, K. A., Miller, G. J., Reeves, B. E. A., Wilkes, H. C. & Cruickshank, J. K. (1989). Factor VII coagulant activity is strongly associated with the plasma concentration of large lipoprotein particles in middle-aged men. Atherosclerosis 76, 203208.CrossRefGoogle ScholarPubMed
Mitropoulos, K. A., Miller, G. J., Watts, G. F. & Durrington, P. N. (1992). Lipolysis of triglyceride-rich lipoproteins activates coagulant factor XII: a study in familial lipoprotein-lipase deficiency. Atherosclerosis 95, 119125.CrossRefGoogle ScholarPubMed
Mitropoulos, K. A., Reeves, B. E. A. & Miller, G. J. (1993). The activation of factor VII in citrated plasma by charged long-chain saturated fatty acids at the interface of large triglyceride-rich lipoproteins. Blood Coagulation and Fibrinolysis 4, 943951.CrossRefGoogle ScholarPubMed
Morrissey, J. H., Macik, B. G., Neuenschwander, P. F. & Comp, P. C. (1993). Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation. Blood 81, 734744.CrossRefGoogle ScholarPubMed
Muller, J. E., Abela, G. S., Nesto, R. W. & Tofler, G. H. (1994). Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. Journal of the American College of Cardiology 23, 809813.CrossRefGoogle ScholarPubMed
Ruddock, V. & Meade, T. W. (1994). Factor VII activity and ischaemic heart disease: fatal and non-fatal events. Quarterly Journal of Medicine 87, 403406.Google ScholarPubMed
Salomaa, V., Rasi, V., Pekkanen, J., Jauhiainen, M., Vahtera, E., Pietinen, P., Korhonen, H., Kuulasmaa, K. & Elnholm, C. (1993). The effects of saturated fat and n-6 polyunsaturated fat on postprandial lipemia and hemostatic activity. Atherosclerosis 103, 111.CrossRefGoogle ScholarPubMed
Sanders, T. A. B., Miller, G. J., de Grassi, T. & Yahia, N. (1996). Postprandial activation of coagulant factor VII by long-chain dietary fatty acids. Thrombosis and Haemostasis 76, 369371.Google ScholarPubMed
Silveira, A., Karpe, F., Blomback, M., Steiner, G., Walldius, G. & Hamsten, A. (1994). Activation of coagulation factor VII during alimentary lipemia. Arteriosclerosis & Thrombosis 14, 6069.CrossRefGoogle ScholarPubMed
Simpson, H. R. C., Mann, J. I., Meade, T. W., Chakrabarti, R., Stirling, Y. & Woolf, L. (1983). Hypertriglyceridaemia and hypercoagulability. Lancet, i 786790.CrossRefGoogle Scholar
Stirling, Y., Woolf, L., North, W. R. S., Seghatchian, M. J. & Meade, T. W. (1984). Haemostasis in normal pregnancy. Thrombosis and Haemostasis 52, 176182.Google ScholarPubMed
Wilcox, J. N., Smith, K. M., Schwartz, S. M. & Gordon, D. (1989). Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proceedings of the National Academy of Sciences, USA 86, 28392843.CrossRefGoogle Scholar
Wildgoose, P., Nemerson, Y., Hansen, L. L., Nielsen, F. E., Glazer, S. & Hedner, U. (1992). Measurement of basal levels of factor VIIa in hemophilia A and B patients. Blood 80, 2528.Google Scholar
Yahia, N. & Sanders, T. A. B. (1996). Influence of n-3 fatty acids on postprandial lipaemia and factor VII coagulant activity. Proceedings of the Nutrition Society 55, 173A.Google Scholar