Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-16T18:29:41.531Z Has data issue: false hasContentIssue false

Polyamines in human health

Published online by Cambridge University Press:  11 October 2007

Heather M. Wallace
Affiliation:
Department of Medicine & Therapeutics and Biomedical Sciences, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, AB9 2ZD
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Physiologically-Active Substances in Plant Foods’
Copyright
Copyright © The Nutrition Society 1996

References

Alhonen-Hongisto, L., Seppanen, P. & Janne, J. (1980). Intracellular putrescine and spermidine deprivation induces increased uptake of the natural polyamines and methylglyoxal bis(guanylhydrazone). Biochemical Journal 192, 941945.CrossRefGoogle ScholarPubMed
Bacchi, C. J. & McCann, P. P. (1987). Parasitic protozoa and polyamines. In Inhibition of Polyamine Metabolism: Biological Significance and Basis for New Therapies, pp. 317344 [McCann, P. P., Pegg, A. E. & Sjoerdsma, A., editor]. New York: Acaderric Press.CrossRefGoogle Scholar
Bacchi, C. J., Nathan, H. C., Hutner, S. H., McCann, P. 'P. & Sjoerdsma, A. (1980). Polyaraine metabolism: a potential therapeutic target in trypanosomes. Science 210, 332334.CrossRefGoogle ScholarPubMed
Bacchi, C. J. & Yarlett, N. (1993). Effects of antagonists of polyamine metabolism on African trypanosomes. Acta Tropica 54, 225236.CrossRefGoogle ScholarPubMed
Bardocz, S. (1993). The role of dietary polyamines. European Journal of Clinical Nutrition 47, 683690.Google ScholarPubMed
Bartholeyns, J., Koch-Weser, J. (1981). Effects of a-difluoromethylornithine alone and combined with adriamycin or vindesine on L1210 leukaemia in mice, EMT6 solid tumours in mice, and solid tumours induced by injection of hepatoma tissue culture ceils in rats. Cancer Research 41, 51585161.Google Scholar
Bergeron, R. J., Neims, A. H., McManis, J. S., Hawthorne, T. R., Vinson, J. R. T., Bortell, R. & Ingeno, M. J. (1988). Synthetic polyamine analogues as antineoplastics. Journal of Medicinal Chemisny 31, 11831190.CrossRefGoogle ScholarPubMed
Bitoni, A. J., Dumont, J. A. & McCann, P. P. (1986). Characterisation of Trypanosoma brucei brucei S-adenosylmethionine decarboxylase and its inhibition by berenil, pentamidine and methylglyoxal bis(guanylhydrazone). Biochemical Journal 237, 685689.CrossRefGoogle Scholar
Casero, R. A. & Pegg, A. E. (1993). Spermidine/spermine N1acetyltransferase-the turning point in polyamine metabolism. FASEB Journal 7, 653661.CrossRefGoogle ScholarPubMed
Cohen, S. S. 1971 An Introduction to the Polyamines, Engelwood Cliffs, New Jersey: Prentice-Hall Inc..Google Scholar
Cooper, K. D., Shukla, J. B. & Rennert, O. (1976). Polyamine distribution in cellular compartments of blood and in ageing erythrocytes. Clinica Chimica Acta 73, 7188.CrossRefGoogle Scholar
Dowling, R. H., Folsch, U. R. & Loser, C. (eds) (1992). In Polyamines in the Gastrointestinal Tract. Folk Symposium no. 62, pp. 389491 Dordrecht: Kluwer Academic Publishers.Google Scholar
Dubin, D. T. & Rosenthal, S. M. (1960). The acetylation of polyamines In Escherichia coli. Journal of Biological Chemistry 235, 776782.CrossRefGoogle ScholarPubMed
Dudley, H. W., Rosenheim, O. & Starling, W. W. (1927). The constitution and synthesis of spermidine, a newly discovered base isolated from animai tissues. Biochemical Journal 21, 97103.CrossRefGoogle Scholar
Durie, B. G. M., Salmon, S. E. & Russell, D. H. (1977). Polyamines as markers of response and disease activity in cancer chemotherapy. Cancer Research 37, 214221.Google ScholarPubMed
Edwards, M. L., Prakash, N. J., Stemerick, D. M., Sunkara, S. P., Bitonti, A. J., Davis, G. F., Dumont, J. A. & Bey, P. (1990). Polyamine analogues with antitumour activity. Journal of Medicinal Chemisny 33, 13691375.CrossRefGoogle Scholar
Evans, P. T. & Malmberg, R. L. (1989). Do polyamines have roles in plant development?. Annual Review of Plant Physiology and Plant Molecular Biology 40, 235269.CrossRefGoogle Scholar
Fairlamb, A. H. & Cerami, A. (1992). Metabolism and functions of trypanothione in the kinetoplastida. Annual Review of Microbiology 46, 695729.CrossRefGoogle ScholarPubMed
Ghoda, L. Y., Phillips, M. A., Bass, K. E., Wang, C. C. & Coffino, P. (1990). Trypanosome ornithine decarboxylase is stable because it lacks sequences found in the carboxyl terminus of the mouse enzyme which target the latter for intracellular degradation. Journal of Biological Chemistry 265, 1182311826.CrossRefGoogle ScholarPubMed
Heby, O. & Anderson, G. (1980). Polyamines and the cell cycle. In Polyamines in Biomedical Research, pp. 1734 [Gaugas, J. M., editor]. New York: Wiley & Sons.Google Scholar
Heby, O. & Persson, L. (1990). Molecular genetics of polyamine synthesis in eukaryotic cells. Trends in the Biochemical Sciences 15, 153158.CrossRefGoogle ScholarPubMed
Janne, J., Alhonen, L. & Leinonen, P. (1991). Polyamines: from molecular biology to clinical applications. Annals of Medicine 23, 241259.CrossRefGoogle ScholarPubMed
Janne, J., Poso, H. & Raina, A. (1978). Polyamines in rapid growth and cancer. Biochimica et Biophysica Acta 473, 241293.Google ScholarPubMed
Kelloff, G. J., Boone, C. W., Crowell, J. A., Steele, V. E., Lubet, R. & Sigman, C. C. (1994). Chemopreventive drug development: perspectives and progress. Cancer Epidemiology Biomarkers and Prevention 3, 8589.Google ScholarPubMed
Kingsnorth, A. N., Lumsden, A. B. & Wallace, H. M. (1984 a). Polyamines in colorectal cancer. British Journal of Surgery 71, 791794.CrossRefGoogle ScholarPubMed
Kingsnorth, A. N. & Wallace, H. M. (1985). Elevation of monoacetylated polyamines in human breast cancer. European Journal of Cancer and Clinical Oncology 21, 10571062.CrossRefGoogle Scholar
Kingsnorth, A. N., Wallace, H. M., Bundred, N. J. & Dixon, J. M. (1984 b). Polyamines in breast cancer. British Journal of Surgery 71, 352356.CrossRefGoogle ScholarPubMed
Libby, P. R., Henderson, M., Bergeron, R. J. & Porter, C. W. (1992). Major increases in SAT activity by spermine analogues and their relationship to polyamine depletion and growth inhibition. Anticancer Research 12, 10831090.Google Scholar
Loser, C., Folsch, U. R., Paprontny, C. & Creutzfeldt, W. (1990). Polyamines in colorectal cancer. Evaluation of polyamine concentrations in the colon tissue, serum and urine of 50 patients with colorectal cancer. Cancer 65, 958966.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
McCormick, F. (1978). Polyamine metabolism in enucleated mouse L-cells. Journal of Cellular Physiology 93, 285292.CrossRefGoogle Scholar
Marton, L. J., Levin, V. A., Hervatin, S. J., Koch-Weser, J., McCann, P. P. & Sjoerdsma, A. (1983). Potentiation of the antitumour therapeutic effects of 1,3 bis(2-chloroethyl)-l nitrosourea by α-difluoromethylornithine an ornithine decarboxylase inhibitor. Cancer Research 41, 44264431.Google Scholar
Marton, L. J. & Pegg, A. E. (1995). Polyamines as targets for therapeutic intervention. Annual Review of Pharmacology and Toxicology 35, 5591.CrossRefGoogle ScholarPubMed
Melvin, M. A. L. & Keir, H. M. (1978). Polyamine metabolism in BHK-21/C13 cells. Loss of spermidine from cells following transfer to serum-depleted medium. Experimental Cell Research 111, 231236.CrossRefGoogle Scholar
Melvin, M. A. L., Wallace, H. M. & Keir, H. M. (1980). Conjugation of polyamines in mammalian cells in culture. Physiology, Chemistry and Physics 12, 431439.Google ScholarPubMed
Metcalf, B. W., Bey, P., Danzin, C., Jung, M. J., Casara, J. & Vevert, J. P. (1978). Catalytic irreversible inhibition of mammalian ornithine decarboxylase (EC 4.1.1.17) by substrate and product analogues. Journal of the American Chemical Society 100, 25512553.CrossRefGoogle Scholar
Moulinoux, J.-Ph., Quemener, V., Cipolla, B., Guille, F., Havouis, R., Martin, C., Lobel, B. & Seiler, N. (1991 a). The growth of Mat-LyLu rat prostatic adenocarcinoma can be prevented in vivo by polyamine depletion. Journal of Urology 146, 14081412.CrossRefGoogle Scholar
Moulinoux, J.-Ph., Quemener, V. & Kahn, N. A. (1991 b). Biological significance of circulating polyarnines in oncology. Cellular and Molecular Biology 37, 772778.Google ScholarPubMed
Balna Parry, L., Fouce, R. & Pegg, A. E. (1995). Post-transcriptional regulation of the content of spermidine/spermine N1-acetyltransferase by N1N12-bis(ethyl)spermine. Biochemical Journal 305, 451458.CrossRefGoogle ScholarPubMed
Pegg, A. E. (1986). Recent advances in the biochemistry of the polyannes in eukaryotes. Biochemical Journal 234, 249262.CrossRefGoogle ScholarPubMed
Pegg, A. E. (1988). Polyamine metabolism and its importance in neoplastic growth as a target for chemotherapy. Cancer Research 48, 759774.Google ScholarPubMed
Pegg, A. E. & McCann, P. P. (1988). Polyamine metabolism and function in mammalian cells and protozoans. ISI Atlas of Science 20, 1118.Google Scholar
Porter, C. W., Cavanaugh, P. F. J. R., Stolowich, N., Ganis, B., Kelly, E. & Bergeron, R. J. (1985). Biological properties of N4-and N1, N8-spermidine derivatives in cultured L1210 leukaemic cells. Cancer Research 45, 20502057.Google Scholar
Porter, C. W., Ganis, B., Libby, P. R. & Bergeron, R. J. (1991). Correlations between polyamine analogue-induced increases in spermidine/spermine N1-acetyltransferase activity, polyamine pool depletion, and growth inhibition by human melanoma cell lines. Cancer Research 51, 37153720.Google ScholarPubMed
Quemener, V., Blanchard, Y., Chamaillard, L., Havouis, R., Cipolla, B., Moulinoux, J.-Ph. (1994). Polyamine depletion: a new tool in cancer treatment. Anticancer Research 14, 443448.Google Scholar
Quick, D. M. & Wallace, H. M. (1993). Induction of spermidine/spermine N1-acetyltransferase in human breast carcinoma cells. Biochemical Pharmacology 46, 969974.CrossRefGoogle ScholarPubMed
Regenass, U., Caravatti, G., Mett, H., Stanek, J., Schneider, P., Muller, M., Matter, A., Vertino, P. & Porter, C. W. (1992). New S-adenosylmethionine decarboxylase inhibitors with potent antitumour activity. Cancer Research 52, 47124718.Google Scholar
Regenass, U., Mett, H., Stanek, J., Mueller, M., Kramer, D. & Porter, C. W. (1994). CGP 48664, a new S-adenosylmethionine decarboxylase inhibitor with broad spectrum antiproliferative and antitumour activity. Cancer Research 54, 32103217.Google Scholar
Rogers, S., Wells, R. & Rechsteiner, M. (1986). Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science 234, 364368.CrossRefGoogle ScholarPubMed
Romain, N., Dandrifosse, G., Jeusette, F. & Forget, P. (1992). Polyamine concentrations in rat milk and food, human milk and infant formulas. Paediatric Research 32, 5863.CrossRefGoogle ScholarPubMed
Russell, D. H., Levy, C. C., Schimpff, S. C. & Hawk, I. A. (1971). Urinary polyamines in cancer patients. Cancer Research 31, 15551558.Google ScholarPubMed
Russell, D. H., Salmon, S. E. & Durie, B. G. M. (1975). Polyamines as predictors of success and failure in cancer chemotherapy. Lancet ii, 797799.CrossRefGoogle Scholar
Seiler, N., Bolkenius, F. N. & Knodgen, B. (1980). Acetylation of spermidine in polyamine catabolism. Biochimica et Biophysica Acta 633, 181190.CrossRefGoogle ScholarPubMed
Seiler, N., Bolkenius, F. N. & Sarhan, S. (1981). Formation of acetylpolyamines in the liver of fasting animals. International Journal of Biochemistry 13, 12051214.CrossRefGoogle ScholarPubMed
Seiler, N., Sarhan, S., Grauffel, C., Jones, R., Knodgen, B., Moulinoux, J.-Ph. (1990). Endogenous and exogenous polyamines in support of tumour growth. Cancer Research 50, 50775083.Google Scholar
Smart, L. M., McLachlan, G., Wallace, H. M. & Thompson, A. W. (1989). Influence of cyclosporin A and α difluoromethylornithine an inhibitor of polyamine biosynthesis, on two rodent T-cell cancers in vivo. International Journal of Cancer 44, 10691073.CrossRefGoogle ScholarPubMed
Stanek, J., Caravatti, G., Caprano, H., Furet, P., Mett, H., Schnieder, P. & Regenass, U. (1993 a). S-Adenosylmethionine decarboxylase inhibitors: new aryl and heteroaryl analogues of methylglyoxal bis(guanylhydrazone). Journal of Medicinal Chemistry 36, 4654.CrossRefGoogle ScholarPubMed
Stanek, J., Caravatti, G., Frei, J., Furet, P., Mett, H., Schneider, P. & Regenass, U. (1993 b). 4-Amidinoindan-1-one 2′-amidinohydrazone: a new potent selective inhibitor of S-adenosylmethionine decarboxylase. Journal of Medicinal Chemistry 36, 21682171.CrossRefGoogle ScholarPubMed
Tabor, C. W. (1968). Effect of temperature on the acetylation of spermidine. Biochemical and Biophysical Research Communications 30, 339342.CrossRefGoogle ScholarPubMed
Tabor, C. W. (1981). Mutants of saccharomyces cerevisiae deficient in polyamine biosynthesis: studies on the regulation of ornithine decarboxylase. Medical Biology 59, 272278.Google ScholarPubMed
Tabor, C. W. & Tabor, H. (1970). The complete conversion of spermidine to a peptide derivative In Escherichia coli. Biochemical and Biophysical Research Communications 41, 232238.CrossRefGoogle ScholarPubMed
Tabor, C. W. & Tabor, H. (1985). Polyamines in microorganisms. Microbiological Reviews 49, 8199.CrossRefGoogle ScholarPubMed
Tofilon, P. J., Deen, D. F. & Marton, L. J. (1983). a-Difluoromethyiornithine-induced polyamine depletion of 9L tumour cells modifies drug induced DNA cross link formation. Science 222, 11321135.CrossRefGoogle ScholarPubMed
Wallace, H. M. (1987). Polyamine metabolism in mammalian cells: excretion and acetylation. Medical Science Research 15, 14371440.Google Scholar
Wallace, H. M. & Coleman, C. S. (1990). Changes in polyamine acetylation in human cancer cells. Biochemical Society Transactions 18, 10911094.CrossRefGoogle ScholarPubMed
Wallace, H. M. & Keir, H. M. (1981). Uptake and excretion of polyamines from baby hamster kidney cells (BHK-21/C13). The effect of serum on confluent cell cultures. Biochimica et Biophysica Acta 676, 2530.CrossRefGoogle ScholarPubMed
Wallace, H. M. & Keir, H. M. (1986). Factors affecting polyamine excretion from mammalian cells in culture. FEBS Letters 194, 6063.CrossRefGoogle ScholarPubMed
Wallace, H. M., MacGowan, S. H. & Keir, H. M. (1985). Polyamine metabolism in mammalian cells in culture. Biochemical Society Transactions 13, 329330.CrossRefGoogle ScholarPubMed
Wallace, H. M., Nuttall, M. E. & Robinson, F. C. (1988). Acetylation of spermidine and methylglyoxal bis(guanylhydrazone) in baby hamster kidney cells (BHK-21/C13). Biochemical Journal 253, 223227.CrossRefGoogle ScholarPubMed
Wallace, H. M. & Quick, D. M. (1994). Regulation of spermidine/spermine N1 acetyltransferase in human tumour cells. Biochemical Society Transactions 22, 870875.CrossRefGoogle ScholarPubMed