Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T23:35:00.989Z Has data issue: false hasContentIssue false

Oxidant stress: the role of nutrients in cell-lipoprotein interactions

Published online by Cambridge University Press:  28 February 2007

Laurence Gesquière
Affiliation:
INSERM U498, Biochimie des Lipoprotéines et Interactions Vasculaires, Université de Bourgogne, 21033-Dijon, France
Nadine Loreau
Affiliation:
INSERM U498, Biochimie des Lipoprotéines et Interactions Vasculaires, Université de Bourgogne, 21033-Dijon, France
Phillipe Durand
Affiliation:
INSERM U498, Biochimie des Lipoprotéines et Interactions Vasculaires, Université de Bourgogne, 21033-Dijon, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Oxidant stress is increasingly becoming an important hypothesis to explain the genesis of several pathologies, including cancer, atherosclerosis and also ageing. Beside a few rare genetic defects, dietary factors are thought to play a key role in the regulation of the production of reactive oxygenated species. An imbalance between nutrients, and in particular those involved in antioxidant status, could explain the onset of an enhanced production of free radicals. We will briefly review information concerning oxidation of lipids and lipoproteins which lead to atherothrombosis. We also present new findings supporting a role for blood platelets in generating oxidant species. New data are also described concerning the role of oxygenated derivatives of cholesterol, oxysterols, in cellular cholesterol efflux and NO production. Also, new developments relating to the influence of direct effects of free radicals on cellular cholesterol homeostasis are presented. Finally, the in vitro effects of butyrate, a natural short-chain fatty acid produced by bacterial fermentation, in the protection against free radical-mediated cytotoxicity are discussed. These data provide information on the mechanisms of dietary antioxidants in preventing oxidant stress.Résumé Au côté des rares cas d’origine génétique, les facteurs nutritionnels (déséquilibres alimentaires, déficience en nutriments antioxydants) jouent des rôles cruciaux dans la modulation de la production d’espèces actives de l’oxygène, conduisant à l’établissement d’un stress oxydant, situation métabolique de plus en plus reconnue comme susceptible d’être à l’origine de nombreuses pathologies comme les cancers, l’athérosclérose et également le vieillissement. Après avoir brièvement rappelé les données concernant l’oxydation des lipides et des lipoprotéines susceptibles de conduire au développement de l’athéro-thrombogenèse, nous présentons des données récentes et originales indiquant que les plaquettes sont en fait capables à l’instar d’autres cellules, de produire des formes actives de l’oxygène susceptibles de modifier les LDL. Des résultats originaux sont également exposés concernant l’effets des oxystérols, produits d’oxydation du cholestérol générés au cours de l’oxydation des LDL ou présents dans l’alimentation, sur deux paramètres importants comme l’efflux du cholestérol cellulaire et la production de monoxyde d’azote. De plus, des données nouvelles relatives à l’effets du stress oxydant et son inhibition par des antioxydants d’origine nutritionnelle sont exposées sur l’homéostasie du cholestérol cellulaire. Enfin, dans ce contexte, les effets potentiellement antiathérogènes d’un acide gras à courte chaîne produit par la fermentation bactérienne, le butyrate, sont décrits sur la protection de cellules en culture vis-à-vis d’un stress oxydant in vitro. Ces éléments contribuent à apporter de nouvelles informations renforçant la notion de fonctionnalité des nutriments dans la protection du stress oxydant en relation avec la pathogenèse.

Type
Symposium on ‘Functionality of nutrients and food safety’
Copyright
Copyright © The Nutrition Society 1999

References

Bessis, R, Jeandet, P, Adrian, M, Breuil, AC, Blache, D, Meunier, P, & Pirio, N (1998) Un polyphénol remarqué: le resvératrol; pourquoi (A remarked polyphenol: resveratrol; why)? In Guide Vin et Santé (Guide Wine and Health), pp. 6173 [Azria, S, editor]. Montpellier, France: Les Editions du Voyage.Google Scholar
Blache, D & Bontoux, G (1988) Biological effects of oxysterols on platelet function. Thrombosis Research 50, 221230.CrossRefGoogle ScholarPubMed
Blache, D & Durand, P (1995) Oxysterols decrease the production of nitric oxide by macrophages. Comptes Rendus de la Société de Biologie 189, 1226.Google Scholar
Blache, D, Durand, P, Girodon, F, Gesquière, L & Loreau, N (1998) Determination of sterols, oxysterols and fatty acids of phospholipids in cells and lipoproteins: a one sample method. Journal of the American Oil Chemists’ Society 75, 107113.CrossRefGoogle Scholar
Blache, D, Rodriguez, C & Davignon, J (1995 a) Platelet-induced oxidative low density lipoprotein modification. Atherosclerosis 115, S14.CrossRefGoogle Scholar
Blache, D, Rodriguez, C & Davignon, J (1995 b) Pro-oxidant effects of 7-hydroperoxycholest-5-en-3β-ol on the copper-initiated oxidation of low density lipoprotein. FEBS Letters 357, 135139.CrossRefGoogle ScholarPubMed
Bugaut, M & Bentéjac, M (1993) Biological effects of short-chain fatty acids in nonruminant mammals. Annual Review of Nutrition 13, 217241.CrossRefGoogle ScholarPubMed
Feng, P, Ge, L, Akyhani, N & Liau, G (1996) Sodium butyrate is a potent modulator of smooth muscle cell proliferation and gene expression. Cell Proliferation 29, 231241.CrossRefGoogle ScholarPubMed
Gelissen, IC, Brown, AJ, Mander, EL, Kritharides, L, Dean, RT & Jessup, W (1996) Sterol efflux is impaired from macrophage foam cells selectively enriched with 7-ketocholesterol. Journal of Biological Chemistry 271, 1785217860.CrossRefGoogle ScholarPubMed
Gesquière, L, Loreau, N & Blache, D (1997) Impaired cellular cholesterol efflux by oxysterol-enriched high density lipoproteins. Free Radical Biology and Medicine 23, 541547.CrossRefGoogle ScholarPubMed
Gesquière, L, Loreau, N, Minnich, A, Davignon, J & Blache, D (1999) Oxidative stress leads to cholesterol accumulation in vascular smooth muscle cells. Free Radical Biology and Medicine (In the Press).CrossRefGoogle ScholarPubMed
Gesquière, L, Loreau, N & Blache, D (1998) Direct effects of free radicals on cholesterol homeostasis of vascular smooth muscle cells. Comptes Rendus de la Société de Biologie 193, 581.Google Scholar
Girodon, F, Blache, D, Monget, AL, Lombart, M, Brunet-Lecompte, P, Arnaud, J, Richard, MJ & Galan, P (1997) Effect of two year supplementation with low dose antioxidant vitamins and/or minerals in elderly subjects on levels of nutrients and on antioxidant defense parameters. Journal of the American College of Nutrition 16, 357365.CrossRefGoogle ScholarPubMed
Gong, QQ & Pitas, RE (1995) Synergistic effects of growth factors on the regulation of smooth muscle cell scavenger receptor activity. Journal of Biological Chemistry 270, 2167221678.CrossRefGoogle ScholarPubMed
Halliwell, B & Cross, CE (1994) Oxygen-derived species: Their relation to human disease and environmental stress. Environmental Health Perspectives 102, Suppl. 10, 512.Google ScholarPubMed
Hertog, MGL, Feskens, EJM & Kromhout, D (1997) Antioxidant flavonols and coronary heart disease risk. Lancet 349, 699.CrossRefGoogle ScholarPubMed
Jang, MS, Cai, EN, Udeani, GO, Slowing, KV, Thomas, CF, Beecher, CWW, Fong, HHS, Farnsworth, NR, Kinghorn, AD, Mehta, RG, Moon, RC & Pezzuto, JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218220.CrossRefGoogle ScholarPubMed
Kandutsch, AA, Chen, HW & Heiniger, H (1978) Biological activity of some oxygenated sterols. Science 201, 498501.CrossRefGoogle ScholarPubMed
Ling, WH & Jones, PJH (1995) Dietary phytosterols: A review of metabolism, benefits and side effects. Life Sciences 57, 195206.CrossRefGoogle ScholarPubMed
Malavasi, B, Rasetti, MF, Roma, P, Fogliatto, R, Allevi, P, Catapano, AL & Galli, G (1992) Evidence for the presence of 7-hydroperoxycholest-5-en-3β-ol in oxidized human LDL. Chemistry and Physics of Lipids 62, 209214.CrossRefGoogle ScholarPubMed
Mietus-Snyder, M, Friera, A, Glass, CK & Pitas, RE (1997) Regulation of scavenger receptor expression in smooth muscle cells by protein kinase C - A role for oxidative stress. Arteriosclerosis, Thrombosis and Vascular Biology 17, 969978.CrossRefGoogle ScholarPubMed
Moncada, S & Higgs, EA (1991) Endogenous nitric oxide: physiology, pathology and clinical relevance. European Journal of Clinical Investigation 21, 361374.CrossRefGoogle ScholarPubMed
Paniangvait, P, King, AJ, Jones, AD & German, BG (1995) Cholesterol oxides in foods of animal origin. Journal of Food Science 60, 11591174.CrossRefGoogle Scholar
Peng, S-K, Hu, B & Morin, RJ (1991) Angiotoxicity and atherogenicity of cholesterol oxides. Journal of Clinical Analysis 5, 144152.CrossRefGoogle ScholarPubMed
Regnström, J, Nilsson, J, Tornvall, P, Landou, C & Hamsten, A (1992) Susceptibility to low-density lipoprotein oxidation and coronary atherosclerosis in man. Lancet 339, 11831186.CrossRefGoogle ScholarPubMed
Rothblat, GH, Mahlberg, FH, Johnson, WJ & Phillips, MC (1992) Apolipoproteins, membrane cholesterol domains, and the regulation of cholesterol efflux. Journal of Lipid Research 33, 10911097.CrossRefGoogle ScholarPubMed
Salonen, JT, Ylä-Herttuala, S, Yamamoto, R, Butler, S, Korpela, H, Salonen, R, Nyyssönen, K, Palinski, W & Witztum, JL (1992) Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 339, 883887.CrossRefGoogle ScholarPubMed
Selley, ML, McGuiness, JA & Ardlie, NG (1996) The effect of cholesterol oxidation products on human platelet aggregation. Thrombosis Research 83, 449461.CrossRefGoogle ScholarPubMed
Sevanian, A, Hodis, HN, Hwang, J, McLeod, LL & Peterson, H (1995) Characterization of endothelial cell injury by cholesterol oxidation products found in oxidized LDL. Journal of Lipid Research 36, 19711986.CrossRefGoogle ScholarPubMed
Spiller, RC (1994) Pharmacology of dietary fibre. Pharmacology and Therapeutics 62, 407427.CrossRefGoogle ScholarPubMed
Steinberg, D, Parthasarathy, S, Carew, TE, Khoo, JC & Witztum, JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. New England Journal of Medicine 320, 915924.Google ScholarPubMed
Velázquez, OC & Rombeau, JL (1997) Butyrate: Potential role in colon cancer prevention and treatment. Advances in Experimental Medicine and Biology 427, 169181.CrossRefGoogle ScholarPubMed
Williams, P, Robinson, D & Bailey, A (1979) High density lipoprotein and coronary risk factors in normal man. Lancet i, 7275.CrossRefGoogle Scholar
Yang, X, Cai, B, Sciacca, RR & Cannon, PJ (1994) Inhibition of inducible nitric oxide synthase in macrophages by oxidized low-density lipoproteins. Circulation Research 74, 318328.CrossRefGoogle ScholarPubMed
Yang, XC, Galeano, NF, Szabolcs, M, Sciacca, RR & Cannon, PJ (1996) Oxidized low density lipoproteins alter macrophage lipid uptake apoptosis, viability and nitric oxide synthesis. Journal of Nutrition 31, 1072S1075S.CrossRefGoogle Scholar
Zhang, H, Basra, HJK & Steinbrecher, UP (1990) Effects of oxidatively modified LDL on cholesterol esterification in cultured macrophages. Journal of Lipid Research 31, 13611369.CrossRefGoogle ScholarPubMed