Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-03T13:26:12.608Z Has data issue: false hasContentIssue false

Organ-Specific measurements of protein turnover in man

Published online by Cambridge University Press:  28 February 2007

Peter J. Garlick
Affiliation:
Rowett Research Institute, Aberdeen
Jan Wernerman
Affiliation:
Department of Anaesthesiology, St Görans Hospital, Stockholm, Sweden
Margaret A. McNurlan
Affiliation:
Rowett Research Institute, Aberdeen
Stephen D. Heys
Affiliation:
Rowett Research Institute, Aberdeen Department of Surgery, University Medical School, Aberdeen
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Clinical aspects of protein and energy metabolism’
Copyright
The Nutrition Society

References

Airhart, J., Vidrich, A., & Khairallah, E. A. (1974). Compartmentation of amino acids for protein synthesis in rat liver. Biochemical Journal 140, 539548.CrossRefGoogle ScholarPubMed
Ballard, F. J. (1982). Regulation of protein accumulation in cultured cells. Biochemical Journal 208, 275287.CrossRefGoogle ScholarPubMed
Ballmer, P. E., Walshe, D., Weber, B. K., Roy-Chaudhury, P., McNurlan, M. A., Power, D. A., Brunt, P. W. & Garlick, P. J. (1990). Modulation of albumin synthesis in diseases of the liver and kidney. Clinical Nutrition 9, 23.CrossRefGoogle Scholar
Bennet, W. M., Connacher, A. A., Scrimgeour, C. M., Smith, K. & Rennie, M. J. (1989). Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of [1-13C]leucine. Clinical Science 76, 447454.CrossRefGoogle ScholarPubMed
Cheng, K. N., Dworzak, F., Ford, G. C., Rennie, M. J. & Halliday, D. (1985). Direct determination of leucine metabolism and protein breakdown in humans using L-[1-13C,15N]leucine and the forearm model. European Journal of Clinical Investigation 15, 349354.CrossRefGoogle ScholarPubMed
Cheng, K. N., Pacy, P. J., Dworzak, F., Ford, G. C. & Halliday, D. (1987). Influence of fasting on leucine and muscle protein metabolism across the human forearm determined using L-[1-13C,15N]leucine as the tracer. Clinical Science 73, 241246.CrossRefGoogle ScholarPubMed
Emergy, P. W., Ward, M. W. N. & Lewin, M. R. (1989). Effect of nutritional support on protein synthesis in tumour and host tissues of rats with colonic cancer. British Journal of Surgery 76, 790792.CrossRefGoogle Scholar
Essen, P., McNurlan, M. A., Vinnars, E., Garlick, P. J. & Wernerman, J. (1990 a). Protein synthesis rate in human skeletal muscle decreases three days after abdominal surgery. Clinical Nutrition 9, 54.CrossRefGoogle Scholar
Essen, P., McNurlan, M. A., Vinnars, E., Wernerman, J. & Garlick, P. J. (1990 b). Protein synthesis rate in human skeletal muscle is unaffected by general anesthesia but decreases during abdominal surgery. Clinical Nutrition 9, 53.CrossRefGoogle Scholar
Fulks, R. M., Li, J. B. & Goldberg, A. L. (1975). Effects of insulin, glucose and amino acids on protein turnover in rat diaphragm. Journal of Biological Chemistry 250, 290298.CrossRefGoogle ScholarPubMed
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). A rapid and convenient method for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochemical Journal 192, 719723.CrossRefGoogle ScholarPubMed
Garlick, P. J., Millward, D. J. & James, W. P. T. (1973). The diurnal response of liver and muscle protein synthesis in vivo in meal-fed rats. Biochemical Journal 136, 935946.CrossRefGoogle ScholarPubMed
Garlick, P. J., Wernerman, J., McNurlan, M. A., Essen, P., Lobley, G. E., Milne, E., Calder, A. G. & Vinnars, E. (1989). Measurement of the rate of protein synthesis in muscle of postabsorptive young men by injection of a flooding dose of [1-13C]leucine. Clinical Science 77, 329336.CrossRefGoogle Scholar
Gelfand, R. A. & Barrett, E. J. (1987). Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. Journal of Clinical Investigation 80, 16.CrossRefGoogle ScholarPubMed
Halliday, D. & McKeran, R. O. (1975). Measurement of muscle protein synthetic rate from serial muscle biopsies and total body protein turnover in man by continuous intravenous infusion of L-[α-15N]lysine. Clinical Science and Molecular Medicine 49, 581590.Google Scholar
Halliday, D., Pacy, P. J., Cheng, K. N., Dworzak, F. D., Gibson, J. N. A. & Rennie, M. J. (1988). Rate of protein synthesis in skeletal muscle of normal man and patients with muscular dystrophy; a reassessment. Clinical Science 74, 237240.CrossRefGoogle ScholarPubMed
Henshaw, E. C., Hirsch, C. A., Morton, B. E. & Hiatt, H. H. (1971). Control of protein synthesis in mammalian tissues through changes in ribosomal activity. Journal of Biological Chemistry 246, 436446.CrossRefGoogle Scholar
Heys, S. D., Park, K. G. M., McNurlan, M. A., Keenan, R. A., Miller, J. D. B., Eremin, O. & Garlick, P. J. (1990 a). Measurement of tissue protein synthesis in pathological conditions of the gastrointestinal tract in man. Proceedings of the Nutrition Society 49, 135A.Google Scholar
Heys, S. D., Park, K. G. M., McNurlan, M. A., Miller, J. D. B., Keenan, R. A., Eremin, O. & Garlick, P. J. (1989). Liver protein synthesis in benign and malignant disease of the gastrointestinal tract. Proceedings of the First Wilson Wang International Surgical Forum 75A.Google Scholar
Heys, S. D., Park, K. G. M., McNurlan, M. A., Milne, E., Keenan, R. A., Miller, J. D. B., Broom, J., Eremin, O. & Garlick, P. J. (1990 b). Stimulation of colorectal tumour protein synthesis, in vivo, by nutritional support. Proceedings of the Nutrition Society 49, 165A.Google Scholar
Long, C. L., Dillard, D. R., Bodzin, J. H., Geiger, J. W. & Blakemore, W. S. (1988). Validity of 3-methylhistidine excretion as an indicator of skeletal muscle protein breakdown in humans. Metabolism 37, 844849.CrossRefGoogle ScholarPubMed
McNurlan, M. A., Essen, P., Milne, E., Buchan, V., Calder, A. G., Wernerman, J., Garlick, P. J. & Vinnars, E. (1989). Similarity of protein synthesis rates measured with [1–13C]leucine and [1–13C]phenylalanine. Clinical Nutrition 8, 123.Google Scholar
McNurlan, M. A., Fern, E. B. & Garlick, P. J. (1982). Failure of leucine to stimulate protein synthesis in vivo. Biochemical Journal 204, 831838.CrossRefGoogle ScholarPubMed
McNurlan, M. A., Tomkins, A. M. & Garlick, P. J. (1979). The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochemical Journal 178, 373379.CrossRefGoogle ScholarPubMed
Matthews, D. E., Schwartz, H. P., Yang, R. D., Motil, K. J., Young, V. R. & Bier, D. M. (1982). Relationship of plasma leucine and α-ketoisocaproate during a L-[1-13C]leucine infusion in man: a method for measuring human intracellular leucine tracer enrichment. Metabolism 31, 11051112.CrossRefGoogle Scholar
Millward, D. J., Price, G. M., Pacy, P. J. H. & Halliday, D. (1991). Whole-body protein and amino acid turnover in man: what can we measure with confidence? Proceedings of the Nutrition Society 50, 197216.CrossRefGoogle Scholar
Mortimore, G. E., Woodside, K. H. & Henry, J. E. (1972). Compartmentation of free valine and its relation to protein turnover in perfused rat liver. Journal of Biological Chemistry 247, 27762784.CrossRefGoogle ScholarPubMed
Mullen, J. L., Buzby, G. P., Gertner, M. H., Stein, T. P., Hargrove, W. C., Oram-Smith, J. & Rosato, E. F. (1980). Protein synthesis dynamics in human gastrointestinal malignancies. Surgery 87, 331338.Google ScholarPubMed
Pain, V. M., Randall, D. P. & Garlick, P. J. (1984). Protein synthesis in liver and skeletal muscle of mice bearing an ascites tumour. Cancer Research 44, 10541057.Google Scholar
Powell-Tuck, J., Garlick, P. J., Lennard-Jones, J. E. & Waterlow, J. C. (1984). Rates of whole body protein synthesis and breakdown increase with severity of inflammatory-bowel disease. Gut 25, 460464.CrossRefGoogle ScholarPubMed
Pozefsky, T., Felig, P., Tobin, J. D., Soeldner, J. S. & Cahill, J. F. (1969). Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two levels. Journal of Clinical Investigation 48, 22732282.CrossRefGoogle Scholar
Stein, T. P., Mullen, J. L., Oran-Smith, J. C., Rosato, E. F., Wallace, H. W. & Hargrove, W. C. III (1978). Relative rates of tumor, normal gut, liver and fibrinogen synthesis in man. American Journal of Physiology 234, E648–E652.Google ScholarPubMed
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North Holland.Google Scholar
Waterlow, J. C. & Stephen, J. M. L. (1968). The effect of low protein diets on the turnover rates of serum, liver and muscle proteins in the rat, measured by continuous infusion of L-[14C]lysine. Clinical Science 35, 287305.Google Scholar
Wernerman, J. & Vinnars, E. (1987). The effect of trauma and surgery on interorgan fluxes of amino acids in man. Clinical Science 73, 129133.CrossRefGoogle ScholarPubMed
Wernerman, J., von der Decken, A. & Vinnars, E. (1985). Size distribution of ribosomes in biopsy specimens of human skeletal muscle during starvation. Metabolism 34, 665669.CrossRefGoogle ScholarPubMed