Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T17:05:54.943Z Has data issue: false hasContentIssue false

Nutrient-hormone signals regulating muscle protein turnover in pigs

Published online by Cambridge University Press:  28 February 2007

Bernard Sève
Affiliation:
Institut National de la Recherche Agronornique, Station de Recherches Porcines, 35590 Saint-Gilles, France
Andrew A. Ponter
Affiliation:
Ecole Nationale Vétérinaire d'Alfort, Laboratoire d'Epidérniologie et de Gestion de la Santé Animale, 94704 Maisons Alfort, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Regulation of nitrogen retention in farm animals’
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Adeola, O., Young, L. G., McBride, B. W. & Ball, R. O. (1989). In vitro Na+, K+-ATPase (EC 3.6.1.3)-dependent respiration and protein synthesis in skeletal muscle of pigs fed at three dietary protein levels. British Journal of Nutrition 61, 453465.CrossRefGoogle Scholar
Agergaard, N., Oksbjerg, N. & Sorensen, M. T. (1991). Influence of growth hormone on homeostasis in finishing pigs. In Protein Metabolism and Nutrition. European Association for Animal Production Publication no. 59, vol. 2, pp. 194197 [Eggum, B. O., Boisen, S., Borsting, C., Danfaer, A. and Hvelplund, T., editors]. Foulum, Denmark: National Institute of Animal Science.Google Scholar
Aoyagi, Y., Tasaki, I., Okomura, J. & Muramatsu, T. (1988). Energy cost of whole-body protein synthesis measured in vivo in chicks. Comparative Biochemistry and Physiology 91A, 765768.CrossRefGoogle Scholar
Baillie, A. & Garlick, P. J. (1991 a). Attenuated responses of muscle protein synthesis to fasting and insulin in adult female rats. American Journal of Physiology 262, ElE5.Google Scholar
Baillie, A. & Garlick, P. J. (1991 b). Responses of protein synthesis in different skeletal muscles to fasting and insulin in rats. American Journal of Physiology 260, E1E5.Google ScholarPubMed
Bennet, W. M., Connacher, A. A., Scrimgeour, C. M., Smith, K. & Rennie, M. J. (1990). The effect of amino acid infusion on leg protein turnover assessed by L-[15N]phenylalanine and L-[13C]leucine exchange. European Journal of Clinical Nutrition 20, 3746.Google ScholarPubMed
Bonneau, M. (1993). Growth hormone response to GRF and insulin-induced hypoglycemia in Yorkshire and Meishan pigs. American Journal of Physiology 264, E54E59.Google ScholarPubMed
Burrin, D. G., Davis, T. A., Ebner, S., Shoknecht, P. A., Fiorotto, M. L., Reeds, P. J. & McAvoy, S. (1995). Nutrient-independent and nutrient-dependent factors stimulate protein synthesis in colostrum-fed newborn pigs. Pediatric Research 37, 593599.CrossRefGoogle ScholarPubMed
Burrin, D. G., Shulman, R. J., Reeds, P. J., Davis, T. A. & Gravitt, K. R. (1992). Porcine colostrum and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal piglets. Journal of Nutrition 122, 12051213.CrossRefGoogle ScholarPubMed
Chung, C. S. & Etherton, T. D. (1986). Characterization of porcine growth hormone (pGH) binding to porcine liver microsomes: Chronic administration of pGH induces pGH binding. Endocrinology 119, 780786.CrossRefGoogle ScholarPubMed
Coleman, M. E. & Etherton, T. D. (1991). Effects of exogenous porcine growth hormone on serum insulin-like growth factor-binding proteins in growing pigs. Journal of Endocrinology 128, 175180.CrossRefGoogle ScholarPubMed
Cortamira, N. O., Séve, B., Lebreton, Y. & Ganier, P. (1991). Effect of dietary tryptophan on muscle, liver and whole-body protein synthesis in weaned piglets: relationship to plasma insulin. British Journal of Nutrition 66, 423435.CrossRefGoogle ScholarPubMed
Davis, T., Burrin, D. G., Fiorotto, M. L. & Nguven, H. V. (1996). Protein synthesis in skeletal muscle and jejunum is more responsive to feeding in 7-than in 26-day-old pigs. American Journal of Physiology 270, E802E809.Google ScholarPubMed
Duchamp, C., Burton, K. A., Herpin, P. & Dauncey, M. J. (1996). Perinatal ontogeny of porcine growth hormone receptor gene expression is modulated by thyroid status. European Journal of Endocrinology 134, 524531.CrossRefGoogle ScholarPubMed
Egan, J. M., Montrose-Rafizadeh, C., Wang, Y., Bernier, M. & Roth, J. (1994). Glucagon-like peptide-l(7–36) amide (GLP-1) enhances insulin stimulated glucose metabolism in 3T3-Ll adipocytes: One of several potential extrapancreatic sites of GLP-1 action. Endocrinology 135, 20702075.CrossRefGoogle Scholar
Etherton, T. D., Wiggins, J. P., Evock, C. M., Chung, C. S., Rebhun, J. F., Walton, P. E. & Steele, N. C. (1987). Stimulation of pig growth performance by porcine growth hormone: determination of the dose-response relationship. Journal of Animal Science 64, 433443.CrossRefGoogle ScholarPubMed
Fluckey, J., Vary, T. C., Jefferson, L. S. & Farrell, P. A. (1996). Augmented insulin action on rates of protein synthesis after exercise in rats. American Journal of Physiology 270, E313E319.Google ScholarPubMed
Fuller, M. F., Cadenhead, A., Mollison, G. & Séve, B. (1987 a). Effects of the amount and quality of dietary protein on nitrogen metabolism and heat production in growing pigs. British Journal of Nutrition 58, 277285.CrossRefGoogle ScholarPubMed
Fuller, M. F. & Garthwaite, P. (1993). The form of response of body protein accretion to dietary amino acid supply. Journal of Nutrition 123, 957963.CrossRefGoogle ScholarPubMed
Fuller, M. F., Reeds, P. J., Cadenhead, A., Sève, B. & Preston, T. (1987 b). Effects of the amount and quality of dietary protein on nitrogen metabolism and protein turnover of pigs. British Journal of Nutrition 58, 287300.CrossRefGoogle ScholarPubMed
Fuller, M. F., Weekes, T. E. C., Cadenhead, A. & Bruce, J. B. (1977). The protein-sparing effect of carbohydrate. 2. The role of insulin. British Journal of Nutrition 38, 489496.CrossRefGoogle ScholarPubMed
Gahl, M. J., Crenshaw, T. D. & Benevenga, N. J. (1994). Diminishing-returns in weight, nitrogen, and lysine gain of pigs fed six levels of lysine from three supplemental sources. Journal of Animal Science 72, 31773187.CrossRefGoogle ScholarPubMed
Garlick, P. J., Fern, M. & Preedy, V. R. (1983). The effect of insulin infusion and food intake on muscle protein synthesis in postabsorptive rats. Biochemical Journal 210, 669676.CrossRefGoogle ScholarPubMed
Garlick, P. J. & Grant, I. (1988). Amino acid infusion increases the sensitivity of muscle protein synthesis in vivo to insulin. Biochemical Journal 254, 579584.CrossRefGoogle ScholarPubMed
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochemical Journal 192, 719723.CrossRefGoogle ScholarPubMed
Grant, A. L., Helferich, W. G., Kramer, S. A., Merkal, R. A. & Bergen, W. G. (1991). Administration of growth hormone to pigs alters the relative amount of insulin-like growth factor-I mRNA in liver and skeletal muscle. Journal of Endocrinology 130, 331338.CrossRefGoogle ScholarPubMed
Grizard, J., Dardevet, D., Papet, I., Mosoni, L., Patureau-Mirand, P., Attaix, D., Tauveron, I., Bonin, D. & Amal, M. (1995). Nutrient regulation of skeletal muscle protein metabolism in animals. The involvement of hormones and substrates. Nutrition Research Reviews 8, 6791.CrossRefGoogle ScholarPubMed
Jacob, R., Hu, X., Niederstock, D., Hasan, S., McNulty, P. H., Sherwin, R. S. & Young, L. H. (1996). IGF-I stimulation of muscle protein synthesis in the awake rat: permissive role of insulin and amino acids. American Journal of Physiology 270, E60E66.Google ScholarPubMed
Jepson, M. M., Bates, P. C. & Millward, D. J. (1988). The role of insulin and thyroid hormones in the regulation of muscle growth and protein turnover in response to dietary protein in the rat. British Journal of Nutrition 59, 397415.Google ScholarPubMed
Jørgensen, J. O. L., Møller, J., Skakkeboek, N. E., Weeke, J. & Christiansen, J. S. (1992). Thyroid function during growth hormone therapy. Hormone Research 38, Suppl. 1, 6367.Google ScholarPubMed
Kahle, E. B., O'Dorisio, T. M., Walker, R. B., Eisenman, P. A., Reiser, S., Cataland, S. & Zipf, W. B. (1986). Exercise adaptation responses for gastric inhibitory polypeptide (GIP) and insulin in obese children. Possible extra-pancreatic effects. Diabetes 35, 579.CrossRefGoogle ScholarPubMed
Knapper, J. M. E., Puddicombe, S. M., Morgan, L. M. & Fletcher, J. M. (1995). Investigations into the actions of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1(7–36) amide on lipoprotein lipase activity in explants of rats adipose tissue. Journal of Nutrition 125, 183188.Google ScholarPubMed
Langar, H., Guillaume, J., Metailler, R. & Fauconneau, B. (1993). Augmentation of protein synthesis and degradation by poor amino acid balance in European sea bass (Dicentrarchus Labrax). Journal of Nutrition 123, 17541761.CrossRefGoogle ScholarPubMed
Lin, F. D., Smith, T. K. & Bayley, H. S. (1988). A role for tryptophan in regulation of protein synthesis in porcine muscle. Journal of Nutrition 118, 445449.CrossRefGoogle ScholarPubMed
Marshall, S., Garvey, W. T. & Traxinger, R. R. (1991). New insights into the metabolic regulation of insulin action and insulin resistance: rô1e of glucose and amino acids. FASEB Journal 5, 30313036.CrossRefGoogle Scholar
Noblet, J., Fortune, H., Dubois, S. & Henry, Y. (1989). Nouvelles Bases d'Estimation des Teneurs en énergie Digestible, Métabolisable et Nette des Aliments pour le Porc (New Basis for Estimation of Digestible, Metabolizable and Net energy in Diets for Pigs). Paris: INRA.Google Scholar
Osei, K., Falko, J. M., O'Dorisio, T. M., Fields, P. G. & Bossetti, B. (1986). Gastric inhibitory polypeptide responses and glucose turnover rates after natural meals in type II diabetic patients. Journal of Clinical Endocrinology and Metabolism 62, 325330.Google ScholarPubMed
Ostaszewski, P. & Nissen, S. (1988). Effect of hyperglucagonemia on whole-body leucine metabolism in immature pigs before and during a meal. American Journal of Physiology 254, E372E377.Google ScholarPubMed
Ponter, A. A., Cortamira, N. O., Sève, B., Salter, D. N. & Morgan, L. M. (1994 a). The effects of energy source and tryptophan on the rate of protein synthesis and on hormones of the entero-insular axis in the piglet. British Journal of Nutrition 71, 661674.CrossRefGoogle ScholarPubMed
Ponter, A. A., Sève, B., Cortamira, N. O., Salter, D. N. & Morgan, L. M. (1991). The effects of dietary energy source and tryptophan on hormones of the entero-insular axis and glucose in the early weaned pig after intragastric infusion of glucose. Proceedings of the Nutrition Society 50, 227A.Google Scholar
Ponter, A. A., Sève, B. & Morgan, L. M. (1994 b). Intragastric tryptophan reduces glycemia after glucose, possibly via glucose-mediated insulinotropic polypeptide (GIP) in early weaned piglets. Journal of Nutrition 124, 259267.CrossRefGoogle Scholar
Preedy, V. R. & Garlick, P. J. (1986). The response of muscle protein synthesis to nutrient intake in postabsorbtive rats: The role of insulin and amino acids. Bioscience Reports 6, 177183.CrossRefGoogle Scholar
Reeds, P. J., Cadenhead, A., Fuller, M. F., Lobley, G. E. & McDonald, J. D. (1980). Protein turnover in growing pigs. Effects of age and food intake. British Journal of Nutrition 43, 445455.CrossRefGoogle ScholarPubMed
Reeds, P. J. & Fuller, M. F. (1983). Nutrient intake and protein turnover. Proceedings of the Nutrition Society 42, 463471.CrossRefGoogle ScholarPubMed
Reeds, P. J., Fuller, M. F., Cadenhead, A., Lobley, G. E. & McDonald, J. D. (1981). Effects of changes in the intakes of protein and non-protein energy on whole-body protein turnover in growing pigs. British Journal of Nutrition 45, 539546.CrossRefGoogle ScholarPubMed
Reeds, P. J., Fuller, M. F. & Nicholson, B. A. (1985). Metabolic basis of energy expenditure with particular reference to protein. In Substrate and Energy Metabolism in Man, pp. 4657 [Garrow, J. S. and Halliday, W., editors]. London: John Libbey & co.Google Scholar
Roy, N., Lapierre, H. & Bernier, J. F. (1997). Effect of lysine deficiency on whole body protein metabolism in growing pigs. Proceedings of the Nutrition Society 56, 176A.Google Scholar
Salter, D. N., Montgomery, A. I., Hudson, A., Quelch, D. B. & Elliot, R. J. (1990). Lysine requirements and whole-body protein turnover in growing pigs. British Journal of Nutrition 63, 503513.CrossRefGoogle ScholarPubMed
Schnoebelen-Combes, S., Louveau, I., Postel-Vinay, M.-C. & Bonneau, M. (1996). Ontogeny of GH receptor and GH-binding protein in the pig. Jounal of Endocrinology 148, 249255.CrossRefGoogle ScholarPubMed
Sève, B. & Ballkère, O. (1991). Approches métaboliques du besoin en acides aminès chez le porc en croissance (Metabolic approach to the amino acid requirements of the pig for growth). Journèes de la Recherche Porcine en France 23, 91110.Google Scholar
Sève, B., Ballèvre, O., Ganier, P., Noblet, J., Prugnaud, J. & Obled, C. (1993). Recombinant porcine somatotropin and dietary protein enhance protein synthesis in growing pigs. Journal of Nutrition 123, 529540.CrossRefGoogle ScholarPubMed
Sève, B., Lebreton, Y., Peiniau, P. & Ganier, P. (1987). Protein synthesis as influenced by weaning in the young pig. In Protein Metabolism and Nutrition, European Association for animal Production Publication no. 35 [Lehman, J., editor]. Rostock: Wilhelm-pieck universität.Google Scholar
Sève, B., Reeds, P. J., Fuller, M. F., Cadenhead, A. & Hay, S. M. (1986). Protein synthesis and retention in some tissues of the young pig as influenced by dietary protein intake after early weaning. Possible connection to the energy metabolism. Reproduction Nutrition Dévloppement 26, 849861.CrossRefGoogle Scholar
Sève, B., Ronat, P., Hess, V., Matte, J. J. & Ponter, A. A. (1997). Evidence for the entero-insular axis in weanling piglets. 7th symposium on digestive physiology in pigs, St-Malo, France. (In the Press).Google Scholar
Sidransky, H., Murty, C. N. & Verney, E. (1984). Nutritional control of protein synthesis studies relating to tryptophan-induced stimulation of nucleocytoplasmic translocation of mRNA in rat liver. American Journal of Pathology 117, 298309.Google ScholarPubMed
Svansberg, E., Zacharisson, H., Ohlsson, C., Britt-Marie, I. & Lunholm, K. G. (1996). Role of insulin and IGF-1 in activation of muscle protein synthesis after oral feeding. American Journal of Physiology 270, E614E620.Google Scholar
Tesseraud, S., Peresson, R., Lopes, J. & Chagneau, A. M. (1996). Dietary lysine deficiency greatly affects muscle and liver protein synthesis in growing chickens. British Journal of Nutrition 75, 853865.CrossRefGoogle ScholarPubMed
Tsiolakis, D. & Marks, V. (1984). The differential effect of intragastric and intravenous tryptophan on plasma glucose, insulin, glucagon, GLI and GIP in the fasted rat. Hormone and Metabolic Research 16, 226229.CrossRefGoogle ScholarPubMed
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: North-Holland.Google Scholar
Watt, P. W., Corbett, M. E. & Rennie, M. J. (1992). Stimulation of protein synthesis in pig skeletal muscle by infusion of amino acids during constant insulin availability. American Journal of Physiology 263, E453E460.Google ScholarPubMed
Whitcomb, D. C., O'Dorisio, T. M., Nishikawa, M. T., Shetzline, M. & Cataland, S. (1984). Identification of target organs for gastric inhibitory polypeptide (GIP) with a new in vivo radioreceptor assay. Digestive Diseases and Sciences 29, 95A.Google Scholar