Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T15:28:03.292Z Has data issue: false hasContentIssue false

Muscle fuel selection: effect of exercise and training

Published online by Cambridge University Press:  28 February 2007

Jan Henriksson
Affiliation:
Department of Physiology and Pharmacology, The Karolinska Institute, Stockholm, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1995

References

Ahlborg, G., Felig, P., Hagenfeldt, L., Hendler, R. & Wahren, J. (1974). Substrate turnover during prolonged exercise in man: splanchnic and leg metabolism of glucose, free fatty acids and amino acids. Journal of Clinical Investigation 53, 10801090.CrossRefGoogle ScholarPubMed
Ahlborg, G., Wahren, J. & Felig, P. (1986). Splanchnic and peripheral glucose and lactate metabolism during and after prolonged arm exercise. Journal of Clinical Investigation 77, 690699.CrossRefGoogle ScholarPubMed
BeltrandelRio, H. & Wilson, J. E. (1992). Coordinated regulation of cerebral glycolytic and oxidative metabolism, mediated by mitochondrially bound hexokinase dependent on intramitochondrially generated ATP. Archives of Biochemistry and Biophysics 296, 667677.CrossRefGoogle ScholarPubMed
Bergström, J., Hermansen, L., Hultman, E. & Saltin, B. (1967). Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica 71, 140150.CrossRefGoogle ScholarPubMed
Borkman, M., Storlien, L. H., Pan, D. A., Jenkins, A. B., Chisholm, D. J. & Campbell, L. V. (1993). The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. New England Journal of Medicine 328, 238244.CrossRefGoogle ScholarPubMed
Buckenmeyer, P. J., Goldfarb, A. H., Partilla, J. S., Pineyro, M. A. & Dax, E. M. (1990). Endurance training, not acute exercise, differentially alters β-receptors and cyclase in skeletal fiber types. American Journal of Physiology 258, E71E77.Google Scholar
Bylund-Fellenius, A. C., Bjurö, T., Cederblad, J., Holm, K., Lundholm, K., Sjöström, M., Ängqvist, K. A. & Scherstén, T. (1977). Physical training in man. Skeletal muscle metabolism in relation to muscle morphology and running ability. European Journal of Applied Physiology and Occupational Physiology 36, 151169.Google Scholar
Carlson, L. A., Ekelund, L.-G. & Fröberg, S. O. (1971). Concentration of triglycerides, phospholipids and glycogen in skeletal muscle and of free fatty acids and beta-hydroxybutyric acid in blood in man in response to exercise. European Journal of Clinical Investigation 1, 248.CrossRefGoogle ScholarPubMed
Cartee, G. D., Young, D. A., Sleeper, M. D., Zierath, J., Wallberg-Henriksson, H. & Holloszy, J. O. (1989). Prolonged increase in insulin-stimulated glucose transport in muscle after exercise. American Journal of Physiology 256, E494E499.Google ScholarPubMed
Coggan, A. R., Kohrt, W. M., Spina, R. J., Bier, D. M. & Holloszy, J. O. (1990). Endurance training decreases plasma glucose turnover and oxidation during moderate-intensity exercise in men. Journal of Applied Physiology 68, 990996.CrossRefGoogle ScholarPubMed
Craig, B. W. (1993). The influence of fructose feeding on physical performance. American Journal of Clinical Nutrition 58, Suppl., 815S819S.CrossRefGoogle ScholarPubMed
Dela, F., Handberg, A., Mikines, K. J., Vinten, J. & Galbo, H. (1993). GLUT 4 and insulin receptor binding and kinase activity in trained human muscle. Journal of Physiology 469, 615624.CrossRefGoogle ScholarPubMed
Devlin, J. T. & Horton, E. S. (1985). Effects of prior high-intensity exercise on glucose metabolism in normal and insulin-resistant men. Diabetes 34, 973979.CrossRefGoogle ScholarPubMed
Dimitriadis, G., Parry-Billings, M., Bevans, S., Dunger, D., Piva, T., Krause, U., Wegener, G. & Newsholme, E. A. (1992). Effects of insulin-like growth factor I on the rates of glucose transport and utilization in rat skeletal muscle in vitro. Biochemical Journal 285, 269274.CrossRefGoogle ScholarPubMed
Dohm, G. L., Hecker, A. L., Brown, W. E., Klain, G. J., Puente, F. R., Askew, E. W. & Beecher, G. R. (1977). Adaptation of protein metabolism to endurance training. Biochemical Journal 164, 705708.CrossRefGoogle ScholarPubMed
Douen, A. G., Ramlal, T., Klip, A., Young, D. A., Cartee, G. D. & Holloszy, J. O. (1989). Exercise-induced increase in glucose transporters in plasma membranes of rat skeletal muscle. Endocrinology 124, 449454.CrossRefGoogle ScholarPubMed
Doyle, J. A., Sherman, W. M. & Strauss, R. L. (1993). Effects of eccentric and concentric exercise on muscle glycogen replenishment. Journal of Applied Physiology 74, 18481855.CrossRefGoogle ScholarPubMed
Ebeling, P., Bourey, R., Koranyi, L., Touminen, J. A., Groop, L. C., Henriksson, J., Mueckler, M., Sovijärvi, A. & Koivisto, V. A. (1993). Mechanism of enhanced insulin sensitivity in athletes. Increased blood flow, muscle glucose transport protein (glut-4) concentration, and glycogen synthase activity. Journal of Clinical Investigation 92, 16231631.CrossRefGoogle ScholarPubMed
Einspahr, K. J. & Tharp, G. (1989). Influence of endurance training on plasma amino acid concentrations in humans at rest and after intense exercise. International Journal of Sports Medicine 10, 233236.CrossRefGoogle ScholarPubMed
Fitts, R. H., Booth, F. W., Winder, W. W. & Holloszy, J. O. (1975). Skeletal muscle respiratory capacity, endurance, and glycogen utilization. American Journal of Physiology 228, 10291033.CrossRefGoogle ScholarPubMed
Fröberg, S. O. (1971). Effects of training and acute exercise in trained rats. Metabolism 20, 10441051.CrossRefGoogle ScholarPubMed
Fröberg, S. O. & Mossfeldt, F. (1971). Effect of prolonged strenuous exercise on the concentration of triglycerides, phospholipids and glycogen in muscle of man. Acta Physiologica Scandinavica 82, 167.CrossRefGoogle ScholarPubMed
Fröberg, S. O., Östman, I. & Sjöstrand, N. O. (1972). Effects of training on esterified fatty acids and carnitine in muscle and on lipolysis in adipose tissue in vitro. Acta Physiologica Scandinavica 86, 166174.CrossRefGoogle ScholarPubMed
Goodyear, L. J., Hirschman, M. F., King, P. A., Horton, E. D., Thompson, C. M. & Horton, E. S. (1990). Skeletal muscle plasma membrane glucose transport and glucose transporters after exercise. Journal of Applied Physiology 68, 193198.CrossRefGoogle ScholarPubMed
Gorski, J. & Kiryluk, T. (1980). The post-exercise recovery of triglycerides in rat tissues. European Journal of Applied Physiology and Occupational Physiology 45, 3341.CrossRefGoogle ScholarPubMed
Green, H. J., Smith, D., Murphy, P. & Fraser, I. (1990). Training-induced alterations in muscle glycogen utilization in fibre-specific types during prolonged exercise. Canadian Journal of Physiology and Pharmacology 68, 13721376.CrossRefGoogle ScholarPubMed
Griffiths, A. J., Humphreys, S. M., Clark, M. L. & Frayn, K. N. (1994). Forearm substrate utilization during exercise after a meal containing both fat and carbohydrate. Clinical Science 86, 169175.CrossRefGoogle ScholarPubMed
Gulve, E. A., Cartee, G. D., Zierath, J. R., Corpus, V. M. & Holloszy, J. O. (1990). Reversal of enhanced muscle glucose transport after exercise: roles of insulin and glucose. American Journal of Physiology 259, E685E691.Google ScholarPubMed
Havel, R. J., Naimark, A. & Borchgrevink, C. F. (1963). Turnover rate and oxidation of free fatty acids of blood plasma in man during exercise: studies during continuous infusion of palmitate-1-14C. Journal of Clinical Investigation 42, 10541063.CrossRefGoogle Scholar
Havel, R. J., Pernow, B. & Jones, N. L. (1967). Uptake and release of free fatty acids and other metabolites in the legs of exercising men. Journal of Applied Physiology 23, 9099.CrossRefGoogle ScholarPubMed
Häggmark, T. (1978). A study of morphologic and enzymatic properties of the skeletal muscles after injuries and immobilization in man. Doctoral Dissertation Thesis, Karolinska Institutet, Stockholm.Google Scholar
Henriksson, J. (1977). Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. Journal of Physiology 270, 661675.CrossRefGoogle ScholarPubMed
Henriksson, J. (1991). Effect of exercise on amino acid concentrations in skeletal muscle and plasma. Journal of Experimental Biology 160, 149165.CrossRefGoogle ScholarPubMed
Hermansen, L., Hultman, E. & Saltin, B. (1967). Muscle glycogen during prolonged severe exercise. Acta Physiologica Scandinavica 71, 129139.CrossRefGoogle ScholarPubMed
Hickner, R. C., Ungerstedt, U. & Henriksson, J. (1994). Regulation of skeletal muscle blood flow during acute insulin-induced hypoglycemia in the rat. Diabetes 43, 13401344.CrossRefGoogle ScholarPubMed
Holloszy, J. O. (1988). Metabolic consequences of endurance exercise training. Exercise, Nutrition and Energy Metabolism, p. 116 [Horton, E. S. and Terjung, R. L., editors]. New York: Macmillan.Google Scholar
Holloszy, J. O. & Booth, F. W. (1976). Biochemical adaptations to endurance exercise in muscle. Annual Reviews of Physiology 38, 273291.CrossRefGoogle ScholarPubMed
Hood, D. A. & Terjung, R. L. (1994). Endurance training alters alanine and glutamine release from muscle during contractions. FEBS Letters 340, 287290.CrossRefGoogle ScholarPubMed
Howald, H., Hoppeler, H., Claassen, H., Mathieu, O. & Straub, R. (1985). Influences of endurance training on the ultrastructural composition of the different muscle fiber types in humans. Pflügers Archiv 403, 369376.CrossRefGoogle ScholarPubMed
Hurley, B. F., Nemeth, P. M., Martin, W. H., Hagberg, J. M., Dalsky, G. P. & Holloszy, J. O. (1986). Muscle triglyceride utilization during exercise: effect of training. Journal of Applied Physiology 60, 562567.CrossRefGoogle ScholarPubMed
Jansson, E. & Kaijser, L. (1987). Substrate utilization and enzymes in skeletal muscle of extremely endurance-trained men. Journal of Applied Physiology 62, 9991005.CrossRefGoogle ScholarPubMed
Ji, L. L., Miller, R. H., Nagle, F. J., Lardy, H. A. & Stratman, F. W. (1987). Amino acid metabolism during exercise in trained rats: the potential role of carnitine in the metabolic fate of branched-chain amino acids. Metabolism 36, 748752.CrossRefGoogle ScholarPubMed
Jones, N. L., Heigenhauser, G. J. F., Kuksis, A., Matos, C. G., Sutton, J. R. & Toews, C. J. (1980). Fat metabolism in heavy exercise. Clinical Science 59, 469478.CrossRefGoogle ScholarPubMed
Kern, M., Tapscott, E. B., Downes, D. L., Frisell, W. R. & Dohm, G. L. (1990). Insulin resistance induced by high-fat feeding is only partially reversed by exercise training. Pflügers Archiv 417, 7983.CrossRefGoogle ScholarPubMed
Kiens, B., Essén-Gustavsson, B., Christensen, N. J. & Saltin, B. (1993). Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. Journal of Physiology 469, 459478.CrossRefGoogle ScholarPubMed
King, D. S., Dalsky, G. P., Clutter, W. E., Young, D. A., Staten, M. A., Cryer, P. E. & Holloszy, J. O. (1988). Effects of exercise and lack of exercise on insulin sensitivity and responsiveness. Journal of Applied Physiology 64, 19421946.CrossRefGoogle ScholarPubMed
Kirwan, J. P., Hickner, R. C., Yarasheski, K. E., Kohrt, W. M., Wiethop, B. V. & Holloszy, J. O. (1992). Eccentric exercise induces transient insulin resistance in healthy individuals. Journal of Applied Physiology 72, 21972202.CrossRefGoogle ScholarPubMed
Laakso, M., Edelman, S. V., Olefsky, J. M., Brechtel, G., Wallace, P. & Baron, A. D. (1990). Kinetics of in vivo muscle insulin-mediated glucose uptake in human obesity. Diabetes 39, 965974.CrossRefGoogle ScholarPubMed
Langfort, J., Budohoski, L. & Newsholme, E. A. (1988). Effect of various types of acute exercise and exercise training on the insulin sensitivity of rat soleus muscle measured in vitro. Pflügers Archiv 412, 101105.CrossRefGoogle ScholarPubMed
Lithell, H., Cedermark, M., Fröberg, J., Tesch, P. & Karlsson, J. (1981). Increase of lipoprotein-lipase activity in skeletal muscle during heavy exercise – relation to epinephrine excretion. Metabolism 30, 11301138.CrossRefGoogle ScholarPubMed
MacLean, D. A. & Graham, T. E. (1993). Branched-chain amino acid supplementation augments plasma ammonia responses during exercise in humans. Journal of Applied Physiology 74, 27112717.CrossRefGoogle ScholarPubMed
Mackie, B. G., Dudley, G. A., Kaciuba-Uscilko, H. & Terjung, R. L. (1980). Uptake of chylomicron triglycerides by contracting skeletal muscles in rats. Journal of Applied Physiology 49, 851855.CrossRefGoogle ScholarPubMed
Marshall, B. A., Ren, J. M., Johnson, D. W., Gibbs, E. M., Lillquist, J. S., Soeller, W. C., Holloszy, J. O. & Mueckler, M. (1993). Germline manipulation of glucose homeostasis via alteration of glucose transporter levels in skeletal muscle. Journal of Biological Chemistry 268, 1844218445.CrossRefGoogle ScholarPubMed
Marshall, S., Garvey, W. T. & Traxinger, R. R. (1991). New insights into the metabolic regulation of insulin action and insulin resistance: role of glucose and amino acids. FASEB Journal 5, 30313036.CrossRefGoogle ScholarPubMed
Martin, W. H., Dalsky, G. P., Hurley, B. F., Matthews, D. E., Bier, D. M., Hagberg, J. M., Rogers, M. A., King, D. S. & Holloszy, J. O. (1993). Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. American Journal of Physiology 265, E708E714.Google ScholarPubMed
Martin, W. H. I., Coggan, A. R., Spina, R. J. & Saffitz, J. E. (1989). Effects of fiber type and training and β-adrenoceptor density in human skeletal muscle. American Journal of Physiology 257, E736E742.Google ScholarPubMed
Mendenhall, L. A., Swanson, S. C., Habash, D. L. & Coggan, A. R. (1994). Ten days of exercise training reduces glucose production and utilization during moderate-intensity exercise. American Journal of Physiology 266, E136E143.Google ScholarPubMed
Mikines, K. J., Sonne, B., Farrell, P. A., Tronier, B. & Galbo, H. (1989 a). Effect of training on the dose–response relationship for insulin action in men. Journal of Applied Physiology 66, 695703.CrossRefGoogle ScholarPubMed
Mikines, K. J., Sonne, B., Tronier, B. & Galbo, H. (1989 b). Effects of acute exercise and detraining on insulin action in trained men. Journal of Applied Physiology 66, 704711.CrossRefGoogle ScholarPubMed
Molé, P. A., Oscai, L. B. & Holloszy, J. O. (1971). Adaptation of muscle to exercise. Increase in levels of palmityl CoA synthetase, carnitine palmityltransferase, and palmityl CoA dehydrogenase, and in the capacity to oxidize fatty acids. Journal of Clinical Investigation 50, 23232330.CrossRefGoogle ScholarPubMed
Morgan, T. E., Short, F. A. & Cobb, L. A. (1969). Effect of long-term exercise on skeletal muscle lipid composition. American Journal of Physiology 216, 8286.CrossRefGoogle ScholarPubMed
Nagasawa, J., Sato, Y. & Ishiko, T. (1990). Effect of training and detraining on in vivo insulin sensitivity. International Journal of Sports Medicine 11, 107110.CrossRefGoogle ScholarPubMed
Nesher, R., Karl, I. E. & Kipnis, D. M. (1985). Dissociation of effects of insulin and contraction on glucose transport in rat epitrochlearis muscle. American Journal of Physiology 249, C226C232.CrossRefGoogle ScholarPubMed
Nikkilä, E. A. & Konttinen, A. (1962). Effect of physical activity on postprandial levels of fats in serum. Lancet 1, 11511154.CrossRefGoogle ScholarPubMed
Nikkilä, E. A., Taskinen, M.-R., Rehunen, S. & Härkönen, M. (1978). Lipoprotein lipase activity in adipose tissue and skeletal muscle of runners: relation to serum lipoproteins. Metabolism 27, 16611671.CrossRefGoogle ScholarPubMed
O'Brien, M. J., Viguie, C. A., Mazzeo, R. S. & Brooks, G. A. (1993). Carbohydrate dependence during marathon running. Medicine and Science in Sports and Exercise 25, 10091017.Google ScholarPubMed
Oscai, L. B., Essig, D. A. & Palmer, W. K. (1990). Lipase regulation of muscle triglyceride hydrolysis. Journal of Applied Physiology 69, 15711577.CrossRefGoogle ScholarPubMed
Pagliassotti, M. J., Shahrokhi, K. A. & Hill, J. O. (1993). Skeletal muscle glucose metabolism in obesity-prone and obesity-resistant rats. American Journal of Physiology 264, R1224R1228.Google ScholarPubMed
Paulussen, R. J. A. & Veerkamp, J. H. (1990). Intracellular fatty-acid-binding proteins. Characteristics and function. Subcellular Biochemistry, p. 175 [Hilderson, H. J., editor]. New York: Plenum Press.CrossRefGoogle Scholar
Pettenkofer, M. & Voit, C. (1866). Untersuchungen über den Stoffverbrauch des normalen Menschen (Investigations on the fuel utilization in normal individuals). Zeitschrift für Biologie 2, 537.Google Scholar
Richter, E. A., Garetto, L. P., Goodman, M. N. & Ruderman, N. B. (1989). Muscle glucose metabolism following exercise in the rat. Increased sensitivity to insulin. Journal of Clinical Investigation 69, 785793.CrossRefGoogle Scholar
Robinson, R., Robinson, L. J., James, D. E. & Lawrence, J. C. Jr (1993). Glucose transport in L6 myoblasts overexpressing GLUT1 and GLUT4. Journal of Biological Chemistry 268, 2211922126.CrossRefGoogle ScholarPubMed
Rogers, M. A., King, D. S., Hagberg, J. M., Ehsani, A. A. & Holloszy, J. O. (1990). Effect of 10 days of physical inactivity on glucose tolerance in master athletes. Journal of Applied Physiology 68, 18331837.CrossRefGoogle ScholarPubMed
Saltin, B. & Gollnick, P. D. (1983). Skeletal muscle adaptability: significance for metabolism and performance. Handbook of Physiology – Skeletal Muscle, p. 555 [Peachy, L. D. Adrian, R. H. and Geiger, S. R., editors]. Bethesda, MD: American Physiology Society.Google Scholar
Saltin, B., Nazar, D. L., Costill, D. L., Stein, E., Jansson, E., Essén, B. & Gollnick, P. (1976). The nature of the training response: peripheral and central adaptations to one-legged exercise. Acta Physiologica Scandinavica 96, 289305.CrossRefGoogle ScholarPubMed
Sherman, W. M. & Costill, D. L. (1984). The marathon: dietary manipulation to optimize performance. American Journal of Sports Medicine 12, 4451.CrossRefGoogle ScholarPubMed
Simsolo, R. B., Ong, J. M. & Kern, P. A. (1993). The regulation of adipose tissue and muscle lipoprotein lipase in runners by detraining. Journal of Clinical Investigation 92, 21242130.CrossRefGoogle ScholarPubMed
Sinacore, D. R. & Gulve, E. A. (1993). The role of skeletal muscle in glucose transport, glucose homeostasis, and insulin resistance: Implications for physical therapy. Physical Therapy 73, 878891.CrossRefGoogle ScholarPubMed
Smythe, C. & Cohen, P. (1991). The discovery of glycogenin and the priming mechanism for glycogen biogenesis. European Journal of Biochemistry 200, 625631.CrossRefGoogle ScholarPubMed
Staron, R. S., Hikida, R. S., Hagerman, F. C., Dudley, G. A. & Murray, T. F. (1984). Human skeletal muscle fiber type adaptability to various workloads. Journal of Histochemistry and Cytochemistry 32, 146152.CrossRefGoogle ScholarPubMed
Sternlicht, E., Barnard, R. J. & Grimditch, G. K. (1989). Exercise and insulin stimulate skeletal muscle glucose transport through different mechanisms. American Journal of Physiology 256, E227E230.Google ScholarPubMed
Stubbe, I., Hansson, P., Gustafson, A. & Nilsson-Ehle, P. (1983). Plasma lipoproteins and lipolytic enzymes activities during endurance training in sedentary men: changes in high-density lipoprotein subfractions and composition. Metabolism 32, 11201128.CrossRefGoogle ScholarPubMed
Svedenhag, J., Lithell, H., Juhlin-Dannfelt, A. & Henriksson, J. (1983). Increased skeletal muscle lipoprotein lipase following endurance training in man. Atherosclerosis 49, 203207.CrossRefGoogle ScholarPubMed
Van Houten, D. R., Davis, J. M., Meyers, D. M. & Dursine, J. L. (1992). Altered cellular distribution of hexokinase in skeletal muscle after exercise. International Journal of Sports Medicine 13, 436438.CrossRefGoogle ScholarPubMed
Vergauwen, L., Hespel, P. & Richter, E. A. (1994). Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle. Journal of Clinical Investigation 93, 974981.CrossRefGoogle ScholarPubMed
Vestergaard, H., Andersen, P. H., Lund, S., Schmitz, O., Junker, S. & Pedersen, O. (1994). Pre- and posttranslational upregulation of muscle-specific glycogen synthase in athletes. American Journal of Physiology 266, E92E101.Google ScholarPubMed
Wade, A. J., Marbut, M. M. & Round, J. M. (1990). Muscle fibre type and aetiology of obesity. Lancet 335, 805808.CrossRefGoogle ScholarPubMed
Wagenmakers, A. J., Coakley, J. H. & Edwards, R. H. T. (1990). Metabolism of branched-chain amino acids and ammonia during exercise: clues from McArdle's disease. International Journal of Sports Medicine 11, S101S113.CrossRefGoogle ScholarPubMed
Wahren, J., Felig, P., Ahlborg, G. & Jorfeldt, L. (1971). Glucose metabolism during leg exercise in man. Journal of Clinical Investigation 50, 27152725.CrossRefGoogle ScholarPubMed
Wallberg-Henriksson, H., Constable, S. H., Young, D. A. & Holloszy, J. O. (1988). Glucose transport into rat skeletal muscle: interaction between exercise and insulin. Journal of Applied Physiology 65, 909913.CrossRefGoogle ScholarPubMed
Williams, R. S., Caron, M. G. & Daniel, K. (1984). Skeletal muscle β-adrenergic receptors: variations due to fiber type and training. American Journal of Physiology 246, E160E167.Google ScholarPubMed
Winder, W. W., Arogyasami, J., Barton, R. J., Elayan, I. M. & Vehrs, P. R. (1989). Muscle malonyl-CoA decreases during exercise. Journal of Applied Physiology 67, 22302233.CrossRefGoogle ScholarPubMed
Winder, W. W., Hagberg, J. M., Hickson, R. C., Ehsani, A. A. & McLane, J. A. (1978). Time course of sympathoadrenal adaptation to endurance exercise training in man. Journal of Applied Physiology 45, 370374.CrossRefGoogle ScholarPubMed
Wolfe, R. R., Wolfe, M. H., Nadel, E. R. & Shaw, J. H. F. (1984). Isotopic determination of amino acid urea interactions in exercise in humans. Journal of Applied Physiology 56, 221229.CrossRefGoogle ScholarPubMed
Yki-Järvinen, H. & Koivisto, V. A. (1983). Effects of body composition on insulin sensitivity. Diabetes 32, 965969.CrossRefGoogle ScholarPubMed
Yki-Järvinen, H., Puhakainen, I., Saloranta, C., Groop, L. & Taskinen, M.-R. (1991). Demonstration of a novel feedback mechanism between FFA oxidation from intracellular and intravascular sources. American Journal of Physiology 260, E680E689.Google ScholarPubMed
Young, A. A., Carlo, P., Smith, P., Wolfe-Lopez, D., Pittner, R., Wang, M. W. & Rink, T. (1993). Evidence for release of free glucose from muscle during amylin-induced glycogenolysis in rats. FEBS Letters 334, 317321.CrossRefGoogle ScholarPubMed
Young, D. A., Wallberg-Henriksson, H., Sleeper, M. D. & Holloszy, J. O. (1987). Reversal of the exercise-induced increase in muscle permeability to glucose. American Journal of Physiology 253, E331E335.Google ScholarPubMed
Zorzano, A., Balon, T. W., Goodman, M. N. & Ruderman, N. B. (1986). Additive effects of prior exercise and insulin on glucose and AIB uptake by rat muscle. American Journal of Physiology 251, E21E26.Google ScholarPubMed