Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T09:46:19.230Z Has data issue: false hasContentIssue false

Modification of Energy Density with Inhibitors of Carbohydrate and Fat Digestion

Published online by Cambridge University Press:  28 February 2007

Rodney H. Taylor
Affiliation:
Professorial Medical Unit, Royal Naval Hospital, Haslar, Gosport, Hampshire PO12 2AA
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Modifying the energy density of human diets’
Copyright
The Nutrition Society

References

Anon (1988). Acarbose. Scrip New Product Review no. 26. Richmond: P.J.B. Publications.Google Scholar
Aubell, R., Boehme, K. & Berchtold, P. (1982). One year acarbose treatment of diabetic outpatients. I Safety. II Efficacy. In Acarbose, effects on carbohydrate and fat metabolism, pp. 360366 [Creutzfeldt, W., editor]. Amsterdam: Excerpta Medica.Google Scholar
Bischoff, H., Puls, W., Krause, H. P., Schmitt, H. & Thomas, G. (1985). Pharmacological properties of the novel glucosidase inhibitors BAY m 1099 (miglitol) and BAY o 1248. Diabetes Research and Clinical Practice Suppl. 1, 133.Google Scholar
Bowman, D. E. (1945). Amylase inhibitor of navy beans. Science 102, 358359.CrossRefGoogle ScholarPubMed
Buonocore, V., Poerio, E. & Silano, V. (1981). The chemistry and biochemistry of α-amylase inhibitors. In Regulators of Intestinal Absorption in Obesity, Diabetes and Nutrition, vol. 1, pp. 87101 [Berchtold, P., Cairella, M., Jacobelli, A. and Silano, V., editors]. Rome: Societa Editrice Universo.Google Scholar
Chrzaszcz, T. & Janicki, J. (1933). ‘Sisto-Amylase’, ein naturlicher Paralysator der Amylase. (‘Sisto-Amylase’, a natural inhibitor of amylase). Biochemische Zeitschrift 260, 354368.Google Scholar
Clissold, S. P. & Edwards, C. (1988). Acarbose, a preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 35, 214243.CrossRefGoogle ScholarPubMed
Clumeck, N. & Hermans, P. (1988). Antiviral drugs other than zidovudine and immunomodulating therapies in human immunodeficiency virus infection. An overview. American Journal of Medicine 85, 165172.Google ScholarPubMed
Comai, K. & Sullivan, A. C. (1980). Antiobesity activity of pluronic L-101. International Journal of Obesity 4, 3342.Google ScholarPubMed
Comai, K., Triscari, J. & Sullivan, A. C. (1978). Comparative effects of amphetamine and fenfluramine on lipid biosynthesis and absorption in the rat. Biochemical Pharmacology 27, 19871994.CrossRefGoogle ScholarPubMed
Creutzfeldt, W. (editor) (1982). In Acarbose, effects on carbohydrate and fat metabolism. Amsterdam: Excerpta Medica.Google Scholar
Creutzfeldt, W. (editor) (1988). In Acarbose for the Treatment of Diabetes Mellitus. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Danzin, C. & Ehrhard, A. (1987). Time-dependent inhibition of sucrase and isomaltase from rat small intestine by castanospermine. Archives of Biochemistry and biophysics 257, 472475.CrossRefGoogle ScholarPubMed
Dimitriadis, G., Hatziagelaki, E., Ladas, S., Linos, A. & Hillebrand, I. (1988). Effects of prolonged administration of two new alpha-glucosidase inhibitors on blood glucose control, insulin requirements and breath hydrogen excretion in patients with insulin dependent diabetes mellitus. European Journal of Clinical Investigation 18, 3338.CrossRefGoogle ScholarPubMed
Eichler, H. G., Korn, A., Gasic, S., Pirson, W. & Businger, J. (1984). The effect of a new specific α-amylase inhibitor on post-prandial glucose and insulin excursions in normal subjects and type 2 (non-insulin-dependent) diabetic patients. Diabetalogia 26, 278281.CrossRefGoogle ScholarPubMed
Goke, B., Fehmann, C., Folsch, U. R. & Creutzfeldt, W. (1984). Influence of a new absorbable inhibitor of α-glucosidase on the rate pancreas. Digestive Diseases and Sciences 29, 951.Google Scholar
Heinz, G., Komjati, M., Korn, A. & Waldhaeusl, W. (1989). Reduction of post-prandial blood glucose by the alpha-glucosidase inhibitor miglitol (BAY m 1099) in type II diabetes. European Journal of Clinical Pharmacology 37, 3336.CrossRefGoogle Scholar
Hillebrand, I. & Boehme, K. (1982). Clinical studies on acarbose during 5 years. In Acarbose, effects on carbohydrate and fat metabolism, pp. 445450. [Creutzfeldt, W., editor]. Amsterdam: Excerpta Medica.Google Scholar
Hillebrand, I., Boehme, K., Frank, G., Fink, H. & Berchtold, P. (1979 a). The effects of the α-glucosidase inhibitor Bay g 5421 (acarbose). on meal stimulated elevations of circulating glucose, insulin and triglyceride levels in man. Research in Experimental Medicine 175, 8186.CrossRefGoogle ScholarPubMed
Hillebrand, I., Boehme, K., Frank, G., Fink, H. & Berchtold, P. (1979 b). The effects of the α-glucosidase inhibitor BAY g 5421 (acarbose) on postprandial blood glucose, serum insulin and triglyceride levels: dose time response relationships in man. Research in Experimental Medicine 175, 8794.CrossRefGoogle ScholarPubMed
Hillebrand, I., Boehme, K., Graefe, K. H. & Wehling, K. (1986). The effect of new α-glucosidase inhibitors on meal stimulated increases in glucose and insulin levels in man. Klinische Wochenschrift 64, 393396.CrossRefGoogle ScholarPubMed
Hillmann, R. J., Scott, M. & Gray, R. S. (1989). Effect of alpha-glucosidase inhibition on glucose profiles in insulin dependent diabetes. Diabetes Research 10, 8184.Google Scholar
Holt, P. R., Thea, D., Yang, M. Y. & Kotler, D. P. (1988). Intestinal and metabolic responses to an alpha-glucosidase inhibitor in normal volunteers. Metabolism 37, 11631170.CrossRefGoogle Scholar
Homma, Y., Irie, N., Yano, Y., Nakaya, N. & Goto, Y. (1982). Changes in plasam lipoprotein levels during medication with a glucosidase hydrolase inhibitor (acarbose). Tokai Journal of Experimental and Clinical Medicine 7, 393396.Google Scholar
Horii, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N. & Matsui, K. (1986). Synthesis and &-D-glucosidase inhibitory activity of N-substituted valiolamine derivatives as potential oral antidiabetic agents. Journal of Medicinal Chemistry 29, 10381046.CrossRefGoogle ScholarPubMed
Jenkins, D. J. A. & Taylor, R. H. (1981). Significance of indigestible carbohydrates in the management of diabetes, hyperlipidaemia and obesity. In Regulators of Intestinal Absorption in Obesity, Diabetes and Nutrition, pp. 295314 [Berchtold, P., Cairella, M., Jacobelli, A. and Silano, V., editors]. Rome: Societa Editrice Universo.Google Scholar
Jenkins, D. J. A. & Taylor, R. H. (1982). Acarbose: dosage and interactions with sugars, starch and fibre. In Acarbose, effects on carbohydrate and fat metabolism, pp. 8696 [Creutzfeldt, W., editor]. Amsterdam: Excerpta Medica.Google Scholar
Jenkins, D. J. A., Taylor, R. H., Goff, D. V., Fielden, H., Misiewicz, J. J., Sarson, D. L., Bloom, S. R. & Alberti, K. G. M. (1981 a). Scope and specificity of acarbose in slowing carbohyrdrate absorption in man. Diabetes 30, 951954.CrossRefGoogle Scholar
Jenkins, D. J. A., Wolever, T. M. S., Taylor, R. H., Barker, H. M., Fielden, H., Baldwin, J. M., Bowling, A. C., Newman, H. C., Jenkins, A. L. & Goff, D. V. (1981 b). Glycaemic index of foods: a physiological basis for carbohydrate exchange. American Journal of Clinical Nutrition 34, 362366.CrossRefGoogle Scholar
Jenkins, D. J. A., Wolever, T. M. S., Taylor, R. H., Ghafari, H., Jenkins, A. L., Barker, H. M. & Jenkins, M. J. A. (1980). Rate of digestion of foods and post-prandial glycaemia in normal and diabetic subjects. British Medical Journal 281, 1417.CrossRefGoogle Scholar
Joubert, P. H., Foukaridis, G. N. & Bopape, M. J. (1987). Miglitol may have a blood glucose lowering effect unrelated to inhibition of alpha glucosidase. European Journal of Clinical Pharmacology 31, 723724.CrossRefGoogle ScholarPubMed
Katsilambros, N., Philippides, P., Toskas, A., Protopapas, J., Frangaki, D., Marangos, M., Siskoudis, P., Anastasopoulou, K., Xefteri, H. & Hillebrand, I. (1986). A double-blind study on the efficacy and tolerance of a new alpha-glucosidase inhibitor in type 2 diabetics. Arzneimittelfoschugn 36, 11361138.Google ScholarPubMed
Kennedy, F. P. & Gerich, J. E. (1988). Alpha-glucosidase inhibition and timing of pre-prandial insulin in patients with insulin-dependent diabetes mellitus. Diabetes Research and Clinical Practice 4, 309312.CrossRefGoogle Scholar
Kennedy, F. P., Miles, J. M., Heiling, V. & Gerich, J. E. (1987). The effect of two new α-glucosidase inhibitors on metabolic responses to a mixed meal in normal volunteers. Clinical and Experimental Pharmacology and Physiology 14, 633640.CrossRefGoogle ScholarPubMed
Kneen, E. & Sandstedt, R. M. (1943). An amylase inhibitor from certain cereals. Journal of the American Chemical Society 65, 1247.CrossRefGoogle Scholar
Kneen, E. & Sandstedt, R. M. (1946). Distribution and general properties of an amylase inhibitor in cereals. Archives of Biochemistry 9, 235249.Google ScholarPubMed
Lembke, B., Foelsch, U. R. & Creutzfeldt, W. (1985). Effect of I-desoxynojirimycin derivatives on small intestinal disaccharidase activities and on active transport in vitro. Digestion 31, 109116.Google Scholar
Madar, Z. (1989). Metabolic consequence of the alpha-glucosidase inhibitor BAY m 1099 given to non-diabetic and diabetic rats fed a high-carbohydrate diet. American Journal of Clinical Nutrition 49, 106111.CrossRefGoogle Scholar
Müller, F. O. (1988). The pharmacokinetics of acarbose in humans. In Acarbose for the Treatment of Diabetes Mellitus, pp. 1724 [Creutzfeldt, W., editor]. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Müller, F. O. & Hillebrand, I. (1986). Acarbose (BAY g 5421) kinetics in healthy volunteers. Acat Pharmacologica et Toxicologica 59, Suppl. V. 303.Google Scholar
O'Dea, K. & Turton, J. (1985). Optimum effectiveness of intestinal α-glucosidase inhibitors: importance of uniform distribution through a meal. American Journal of Clinical Nutrition 41, 511516.CrossRefGoogle ScholarPubMed
Puls, W. & Keup, U. (1973). Influence of an α-amylase inhibitor (BAY d 7791) on blood glucose, serum insuling and NEFA in starch loading tests in rats, dogs and man. Diabetologia 9, 97101.CrossRefGoogle Scholar
Puls, W., Keup, U., Krause, H. P., O'Dea, K. & Sitt, R. (1981). Pharmacological significance of alpha-amylase inhibitors. In Regulators of Intestinal Absorption in Obesity, Diabetes and Nutrition, vol. 1, pp. 153179 [Berchtold, P., Cairella, M., Jacobelli, A. and Silano, V., editors]. Rome: Societa Editrice Universo.Google Scholar
Puls, W., Keup, U., Krause, H. P. & Thomas, G. (1977 a). Glucosidase inhibition: a new approach to the treatment of carbohydrate dependent metabolic disorders. Diabetologia 13, 426.Google Scholar
Puls, W., Keup, U., Krause, H. P., Thomas, G. & Hoffmeister, F. (1977 b). Glucosidase inhibition: a new approach to the treatment of diabetes, obesity and hyperlipoproteinaemia. Nuturwissenschaften 64, 536.CrossRefGoogle Scholar
Puls, W., Krause, H. P., Muller, L., Schutt, H., Sitt, R., & Thomas, G. (1984). Inhibitors of the rate of carbohydrate and lipid absorption by the intestine. International Journal of Obesity 8, Suppl. 1, 181190.Google ScholarPubMed
Radziuk, J., Kemmer, F., Berchtold, P. & Vranic, M. (1982). Quantitation of the effects of the α-glucosidase inhibitor acarbose on the hydrolysis and absorption of sucrose and hormone responses in man. In Acarbose, effects on carbohydrare and fat metabolism, pp. 113122 [Creutzfeldt, W., editor]. Amsterdam: Excerpta Medica.Google Scholar
Ramsch, K. D., Wetzelsberger, N., Putter, J. & Maul, W. (1985). Pharmacokinetics and metabolism of the desoxynojirimycin derivatives BAY m 1099 and BAY o 1248. Diabetes Research and Clinical Practice Suppl. 1, 1199.Google Scholar
Rhinehart, B. L., Robinson, K. M., Liu, P. S., Payne, A. J., Wheatley, M. E. & Wagner, S. R. (1987 a). Inhibition of intestinal disaccharidases and suppression of blood glucose by a new α-glucohydrolase inhibitor-MDL 25,637. Journal of Pharmacology and Experimental Therapeutics 241, 915920.Google ScholarPubMed
Rhinehart, B. L., Robinson, K. M., Payne, A. J., Wheatley, M. E., Fisher, J. L., Liu, P. S. & Cheng, W. (1987 b). Castanospermine blocks the hyperglycaemic response to carbohydrates in vivo: a result of intestinal disaccharidase inhibition. Life Sciences 41, 23252331.CrossRefGoogle ScholarPubMed
Samad, A. H., Willing, T. S., Alberti, K. G. & Taylor, R. (1988). Effects of Bay m 1099, a new alpha-glucosidase inhibitor, on acute metabolic responses and metabolic control in non-insulin dependent diabetes mellitus over one month. Diabetes Care 11, 337344.CrossRefGoogle Scholar
Schmidt, D. D., Frommer, W., Junge, B., Müller, L., Wingender, W., Truscheit, E. & Schafter, D. (1977). α-glucosidase inhibitors: new complex oligosaccharides of microbial orgin. Naturwissenschaften 64, 535536.CrossRefGoogle Scholar
Schnack, C., Prager, R. J., Winkler, J., Klauser, R. M. & Schneider, B. G. (1989). Effects of 8-week alpha-glucosidase inhibition on metabolic control, C-peptide secretion, hepatic glucose output, and peripheral insulin sensitivity in poorly controlled type II diabetic patients. Diabetes Care 12, 537543.CrossRefGoogle Scholar
Scott, A. R. & Tattersall, R. B. (1988). Alpha glucosidase inhibition in the treatment of non-insulin-dependent diabetes mellitus. Diabetic Medicine 5, 4246.CrossRefGoogle ScholarPubMed
Serrano-Rios, M., Saban, J., Navascues, I., Canizo, J. F. & Hillebrand, I. (1988). Effect of two new alpha-glucosidase inhibitors in insulin-dependent diabetic patients. Diabetes Research and Clinical Practice 4, 111116.CrossRefGoogle ScholarPubMed
Sitt, R., Krause, H. P., Puls, W., Steinert, G. & Horstmann, H. (1980). Inhibition of cholesterol and triglyceride absorpition. VIIth International Symposium on Drugs Affecting Lipid Metabolism, p. 80. Milano: Fondazione G. Lorenzini.Google Scholar
Taylor, R. H., Barker, H. M., Bowey, E. A. & Canfield, J. E. (1986). Regulation of the absorption of the dietary carbohydrate in man by two new glucosidase inhibitors. Gut 27, 14711478.CrossRefGoogle Scholar
Taylor, R. H., Jenkins, D. J. A., Barker, H. M., Fielden, H., Goff, D. V., Misiewicz, J. J., Lee, D. A., Allen, B., McDonald, G. & Wallrabe, H. (1982 a). Effect of acarbose on the 24-hour blood glucose profile and pattern of carbohydrate absorpition. Diabetes Care 5, 9296.CrossRefGoogle Scholar
Taylor, R. H., Jenkins, D. J. A., Goff, D. V., Bloom, S. R., Sarson, D. L., Misiewicz, J. J. & Alberti, K. M.G. M. (1982 b). Gut hormone response to carbohydrate with acarbose and guar. In Acarbose, effects on carbohydrate and fat metabolism, pp. 206209 [Creutzfeldt, W., editor]. Amsterdam: Excerpta Medica.Google Scholar
Taylor, R. H., Jenkins, D. J. A., Goff, D. V., Nineham, R., Bloom, S. R. & Sarson, D. (1980). Enteroglucagon release stimulated by carbohydrate malabsorption: a clue to its physiological role? Gut 21, 449.Google Scholar
Truscheit, E., Frommer, W., Junge, B., Müller, L., Schmidt, D. D. & Wingender, W. (1981). Chemistry and Biochemistry of microbial α-glucosidase inhibitors. Angewandte Chemike 20, 744761.Google Scholar
Truscheit, E., Hillebrand, I., Junge, B., Müller, L., Puls, W. & Schmidt, D. (1988). Microbial α-glucosidase inhibitors: chemistry, biochemistry and therapeutic potential. Progress in Clinical Biochemistry 7, 1799.CrossRefGoogle Scholar
Tyms, A. S., Berrie, E. M., Ryder, T. A., Nash, R. J., Hegarty, M. P., Taylor, D. L., Mobberley, M. A., Davis, J. M., Bell, E. A., Jeffries, D. J., Taylor-Robinson, D. & Fellows, L. E. (1987). Castanospermine and other plant alkaloid inhibitors of glucosidase activity block the growth of HIV. Lancet ii, 10251026.CrossRefGoogle Scholar
Uttenthal, L. O., Ukponmwan, O. O., Wood, S. M., Ghiglione, M., Ghatei, M. A., Trayner, I. M. & Bloom, S. R. (1986). Long-term effects of intestinal alphaglucosidase inhibition on post-prandial glucose, pancreatic and gut hormone responses and fasting serum lipids in diabetics and sulphonylureas. Diabetic Medicine 3, 155160.CrossRefGoogle ScholarPubMed
Uttenthal, L. O., Ukponmwan, O. O., Ghiglione, M., & Bloom, S. R. (1987). Acute and short term effects of intestinal alpha-glucosidase inhibition on gut hormone responses in man. Digestive Diseases and Sciences 32, 139144.CrossRefGoogle ScholarPubMed
Vertesy, L., Oeding, V., Bender, R., Nesemann, G., Sukatsch, D. & Zepf, K. (1981). Chemistry and biochemistry of a novel alpha-amylase inactivator HOE 467 from St. tendae. In Regulators of Intestinal Absorption in Obesity, Diabetes and Nutrition, vol. 2, pp. 269274 [Berchtold, P., Cairella, M., Jacobelli, A., and Silano, V., editors]. Rome: Societa Editrice Universo.Google Scholar
Vierhapper, H., Bratusch-Marrain, P. & Waldhausl, W. (1981). Long term treatment of sulphonylurea-treated diabetics with the alpha-glucosidase inhibitor Bay g 5421 (acarbose). Diabetalogia 20, 586.CrossRefGoogle ScholarPubMed
William-Olsson, T. (1985). α-glucosidase inhibition in obesity. Acta Medica Scandinavica 706, Suppl., 139.Google Scholar
Yoshikuni, Y., Ezure, Y., Aoyagi, Y. & Enomoto, H. (1988). Inhibition of intestinal α-glucosidase and postprandial hyperglycaemia by N-substituted moranoline deriviatives. Journal of Pharmacobia-Dynamics 11, 356362.CrossRefGoogle Scholar
Yoshikuni, Y., Ezure, Y., Seto, T., Mori, K., Watanabe, M. & Enomoto, H. (1989). Synthesis and α-glucosidase-inhibiting activity of a new alpha-glucosidase inhibitor, 4-0-alpha-D-glucopyranosylmoranoline and its N-substituted derivatives. Chemical and Pharmaceutical Bulletin 37, 106109.CrossRefGoogle ScholarPubMed