Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T17:05:10.314Z Has data issue: false hasContentIssue false

Modelling post-absorptive protein and amino acid metabolism in the ruminant

Published online by Cambridge University Press:  28 February 2007

Mark D. Hanigan
Affiliation:
Dairy Research Group, Purina Mills, Inc., 1401 South Hanley, St Louis, MO 63144, USA
Jan Dukstra
Affiliation:
Wageningen Institute of Animal Sciences ( WIAS), Department of Animal Nutrition, Wageningen Agricultural University, Marijkeweg 40, 6709 PG Wageningen, The Netherlands
Walter J. J. Gerrits
Affiliation:
Wageningen Institute of Animal Sciences ( WIAS), Department of Animal Nutrition, Wageningen Agricultural University, Marijkeweg 40, 6709 PG Wageningen, The Netherlands
James France
Affiliation:
Institute of Grassland and Environmental Research, North Wyke Research Station, Okehampton, Devon EX20 2SB
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Regulation of nitrogen retention in farm animals’
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Agricultural and Food Research Council (1990) AFRC Technical Committee on Responses to Nutrients. Report no. 5. Nutritive requirements of ruminant animals: energy. Nutrition Abstracts and Reviews 60, 729804.Google Scholar
Agricultural and Food Research Council (1992). AFRC Technical Committee on Responses to Nutrients. Report no. 9. Nutritive requirements of ruminant animals: protein. Nutrition Abstracts and Reviews 62, 787835.Google Scholar
Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Baldwin, R. L., France, J. & Gill, M. (1987). Metabolism of the lactating cow. I. Animal elements of a mechanistic model. Journal of Dairy Research 54, 77105.Google Scholar
Beever, D. E. & Cottrill, B. R. (1994). Protein systems for feeding ruminant livestock: a European assessment. Journal of Dairy Science 77, 20312043.CrossRefGoogle ScholarPubMed
Benevenga, N. J., Gahl, M. & Blemings, K. P. (1993). Role of protein synthesis in amino acid catabolism. Journal of Nutrition 123, 332336.Google Scholar
Bequette, B. J., Metcalf, J. A., Wray-Cahen, D., Backwell, F. R. C., Sutton, J. D., Lomax, M. A., MacRae, J. C. & Lobley, G. E. (1996). Leucine and protein metabolism in the lactating dairy cow mammary gland—responses to supplementary dietary crude protein intake. Journal of Dairy Research 63, 209222.CrossRefGoogle Scholar
Boisclair, Y. R., Bell, A. W., Dunshea, F. R., Harkins, M. & auman, D. E. (1993). Evaluation of the arteriovenous difference technique to simultaneously estimate protein synthesis and degradation in the hind-limb of fed and chronically underfed steers. Journal of Nutrition 123, 10761088.Google Scholar
Cant, J. P., DePeters, E. J. & Baldwin, R. L. (1993). Mammary amino acid utilization in dairy cows fed fat and its relationship to milk protein depression. Journal of Dairy Science 76, 762764.CrossRefGoogle ScholarPubMed
Cant, J. P. & McBride, B. W. (1995). Mathematical analysis of the relationship between blood flow and uptake of nutrients in the mammary glands of a lactating cow. Journal of Dairy Research 62, 405422.CrossRefGoogle ScholarPubMed
Connell, A., Calder, A. G., Anderson, S. E. & obley, G. E. (1997). Hepatic protein synthesis in the sheep: effect of intake as monitored by use of stable-isotope-labelled glycine, leucine and phenylalanine. British Journal of Nutrition 77, 255271.CrossRefGoogle ScholarPubMed
Evans, E. H. & atterson, R. J. (1985). Use of dynamic modeling seen as good way to formulate crude protein amino acid requirements for cattle diets. Feedstuffs 57, 2427.Google Scholar
Fox, D. G., Sniffen, C. J., O'Connor, J. D., Russell, J. B. & Van Soest, P. J. (1992). A net carbohydrate and protein system for evaluating cattle diets: III. Cattle requirements and diet adequacy. Journal of Animal Science 70, 35783596.Google Scholar
France, J., Bequette, B. J., Lobley, G. E., Metcalf, J. A., Wray-Cahen, D., Dhanoa, M. S., Backwell, F. R. C., Hanigan, M. D., MacRae, J. C. & Beever, D. E. (1995). An isotope dilution model for partitioning leucine uptake by the bovine mammary gland. Journal of Theoretical Biology 172, 369377.Google Scholar
France, J., Calvert, C. C., Baldwin, R. L. & Klasing, K. C. (1988). On the application of compartmental models to radioactive tracer kinetic studies of in vivo protein turnover in animals. Journal of Theoretical Biology 133, 447471.Google Scholar
Freetly, H. C., Knapp, J. R., Calvert, C. C. & Baldwin, R. L. (1993). Development of a mechanistic model of liver metabolism in the lactating cow. Agricultural Systems 41, 157195.Google Scholar
Garlick, P. J., Millward, D. J. & James, W. P. T. (1973). The diurnal response of muscle and liver protein synthesis in vivo in meal-fed rats. Biochemical Journal 136, 935945.Google Scholar
Gerrits, W. J. J., Verstegen, M. W. A., France, J., Dijkstra, J., Tolman, G. H. & Schrama, J. W. (1996). Modelling growth of veal calves. In Veal, Perspectives to the Year 2000, Proceedings of the International Symposium, pp. 243253. Paris: Fédération de la Vitellerie Française.Google Scholar
Gill, M., France, J., Summers, M., McBride, B. W. & Milligan, L. P. (1989). Mathematical integration of protein metabolism in growing lambs. Journal of Nutrition 119, 12691286.CrossRefGoogle ScholarPubMed
Hanigan, M. D. & Baldwin, R. L. (1994). A mechanistic model of mammary gland metabolism in the lactating cow. Agricultural Systems 45, 369419.Google Scholar
Hanigan, M. D., France, J., Reutzel, L., Wray-Cahen, D., Beever, D. E., Lobley, G. E. & Smith, N. E. (1996). An analysis of transorgan metabolite extraction data. FASEB Journal 10, A202.Google Scholar
Harris, P. M., Skene, P. A., Buchan, V., Milne, E., Calder, A. G., Anderson, S. E., Connell, A. & Lobley, G. E. (1992). Effect of food intake on hind-limb and whole-body protein metabolism in young growing sheep: chronic studies based on arterio-venous techniques. British Journal of Nutrition 68, 389407.CrossRefGoogle ScholarPubMed
Jarrige, R. (1978). Alimentation des Bovins, Ovins et Caprins (Feeding of Cattle, Sheep and Goats). Paris: INRA.Google Scholar
Jepson, M. M., Bates, P. C. & Millward, D. J. (1988). The role of insulin and thyroid hormones in the regulation of muscle growth and protein turnover in response to dietary protein in the rat. British Journal of Nutrition 59, 397415.Google Scholar
Liu, S. M., Lobley, G. E., MacLeod, N. A., Kyle, D. J., Chen, X. B. & Ørskov, E. R. (1995). Effects of long-term protein excess or deficiency on whole-body protein turnover in sheep nourished by intragastric infusion of nutrients. British Journal of Nutrition 73, 829839.CrossRefGoogle ScholarPubMed
Lobley, G. E., Connell, A., Lomax, M. A., Brown, D. S., Milne, E., Calder, A. G. & Farningharn, D. A. H. (1995). Hepatic detoxification of ammonia in the ovine liver: possible consequences for amino acid catabolism. British Journal of Nutrition 73, 667685.Google Scholar
Lobley, G. E., Connell, A., Revell, D. K., Bequette, B. J., Brown, D. S. & Calder, A. G. (1996). Splanchnic bed transfers of amino acids in sheep blood and plasma, as monitored through use of a multiple U-13C-labelled amino acid mixture. British Journal of Nutrition 75, 217235.Google Scholar
Lobley, G. E., Milne, V., Lovie, J. M., Reeds, P. J. & Pennie, K. (1980). Whole body and tissue protein synthesis in cattle. British Journal of Nutrition 43, 491502.Google Scholar
MacRae, J. C., Bruce, L. A., Brown, D. S. & Calder, A. G. (1997 a). Amino acid use by the gastrointestinal tract of sheep given lucerne forage. American Journal of Physiology (In the Press).Google Scholar
Metcalf, J. A., Beever, D. E., Sutton, J. D., Wray-Cahen, D., Evans, R. T., Humphries, D. J., Backwell, F. R. C., Bequette, B. J. & MacRae, J. C. (1994). The effect of supplementary protein on in vivo metabolism of the mammary gland in lactating dairy cows. Journal of Dairy Science 77, 18161827.CrossRefGoogle ScholarPubMed
Metcalf, J. A., Wray-Cahen, D., Chettle, E. E., Sutton, J. D., Beever, D. E., Crompton, L. A., MacRae, J. C., Bequette, B. J. & Backwell, F. R. C. (1996). The effect of dietary crude protein as protected soybean meal on mammary metabolism in the lactating dairy cow. Journal of Dairy Science 79, 603611.CrossRefGoogle ScholarPubMed
National Research Council (1984) Nutrient Requirements of Beef Cattle, 6th ed. Washington, DC: National Academy Press.Google Scholar
National Research Council (1985). Ruminant Nitrogen Usage. Washington, DC: National Academy Press.Google Scholar
National Research Council (1989). Nutrient Requirements of Dairy Cattle, 6th ed. Washington, DC: National Academy Press.Google Scholar
O'Connor, J. D., Sniffen, C. J., Fox, D. G. & Chalupa, W. (1993). A net carbohydrate and protein system for evaluating cattle diets: IV. Predicting amino acid adequacy. Journal of Animal Science 71, 12981311.CrossRefGoogle ScholarPubMed
Oldham, J. D. (1980). Amino acid requirements for lactation in high yielding dairy cows. In Recent Advances in Animal Nutrition, pp. 5365 [Haresign, W., editor]. London: Buttenworths.Google Scholar
Oxender, D. L. & Christensen, H. N. (1963). Distinct mediating systems for the transport of neutral amino acids by the Ehrlich cell. Journal of Biology and Chemistry 238, 36863699.Google Scholar
Russell, J. B., O'Connor, J. D., Fox, D. G., Van Soest, P. J. & Sniffen, C. J. (1992). A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science 70, 35513561.Google Scholar
Simon, O. (1989). Metabolism of proteins and amino acids. In Protein Metabolism in Farm Animals, pp. 273– 366 [Bock, H. D., Eggum, B. O., Low, A. G., Simon, O. and Zebrowska, T., editors]. Berlin: Deutscher Landwirtschaftsverlag.Google Scholar
Sniffen, C. J., O'Connor, J. D., Van Soest, P. J., Fox, D. G. & Russell, J. B. (1992). A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. Journal of Animal Science 70, 35623577.CrossRefGoogle ScholarPubMed
Tagari, H. & Bergman, E. N. (1978). Intestinal disappearance and portal blood appearance of amino acids in sheep. Journal of Nutrition 108, 790803.Google Scholar
Tamminga, S. (1992). Nutrition management of dairy cows as a contribution to pollution control. Journal of Dairy Science 75, 345357.Google Scholar
Tamminga, S., Van Straalen, W. M., Subnel, A. P. J., Meijer, R. G. M., Steg, A., Wever, C. J. G. & Blok, M. C. (1994). The Dutch protein evaluation system: the DVB/OEB-system. Livestock Production Science 40, 139155.Google Scholar
Tolman, G. H., Wiebenga, J. & Beelen, G. M. (1991). The Lysine and Methionine + Cystine Requirement of Friesian Veal Calves (220–250kg), Internal Report, I 913740. Wageningen: TNO Nutrition and Food Research Institute.Google Scholar
Van Es, A. J. H. (1978). Feed evaluation for ruminants. 1. The system in use from May 1978 onwards in The Netherlands. Livestock Production Science 5, 331345.Google Scholar
Vérité, R., (1987). Revision du systeme des proteins digestibles dans l'intestin (PDI) (Reappraisal of the intestinally digestible protein system). Bulletin Technique C.R.Z.V. Theix INRA 70, 1934.Google Scholar
Waghorn, G. C. & Baldwin, R. L. (1984). Model of metabolite flux within mammary gland of the lactating cow. Journal of Dairy Science 67, 531544.Google Scholar
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: Elsevier/north Holland Biomedical Press.Google Scholar