Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T00:27:50.489Z Has data issue: false hasContentIssue false

Low-density lipoprotein subclasses: mechanisms of formation and modulation

Published online by Cambridge University Press:  28 February 2007

Bruce A. Griffin
Affiliation:
Centre for Nutrition and Food Safety, School of Biological Sciences, University of Surrey, Guildford GU2 5XH
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Attia, N., Durlach, V., Paul, J. P., Soni, T., Betoulle, D. & Girard-Globa, A. (1995). Modulation of low density lipoprotein subclasses by alimentary lipemia in control and normotriglyceridemia non-insulin dependent diabetic subjects. Atherosclerosis 113, 197209.CrossRefGoogle Scholar
Austin, M. A. (1991). Plasma triglyceride and coronary heart disease. Arteriosclerosis & Thrombosis 11, 214.CrossRefGoogle ScholarPubMed
Austin, M. A., Breslow, J. L., Hennekens, C. H., Burling, J. E., Willett, W. C. & Krauss, R. M. (1988). Low density lipoprotein subclass patterns and risk of myocardial infarction. Journal of the American Medical Association 260, 19171921.CrossRefGoogle ScholarPubMed
Austin, M. A., King, M. C., Vranizan, K. M. & Krauss, R. M. (1990). Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease. Arteriosclerosis & Thrombosis 82, 495506.Google ScholarPubMed
Austin, M. & Krauss, R. M. (1986). Genetic control of low density lipoprotein subclasses. Lancet ii, 592594.CrossRefGoogle Scholar
Auwerx, J. H., Marzetta, C. A., Hokanson, J. E. & Brunzell, J. D. (1989). Large buoyant LDL-like particles in hepatic lipase deficiency. Arteriosclerosis 9, 319325.CrossRefGoogle ScholarPubMed
Bavenholm, P., Karpe, F., Proudler, A., Tornvall, P., Crook, D. & Hamsten, A. (1995). Association of insulin and insulin propeptides with an atherogenic lipoprotein phenotype. Metabolism 44, 14811488.Google Scholar
Bergeron, N. & Havel, R. J. (1996). Prolonged postprandial responses of lipids and apolipoproteins in triglyceride-rich lipoproteins of individuals expressing an apolipoprotein ε4 allele. Journal of Clinical Investigation 97, 6572.CrossRefGoogle Scholar
Bjorkegren, J., Packard, C. J., Hamsten, A., Bedford, D., Caslake, M. J., Foster, L., Shepherd, J., Stewart, P. & Karpe, F. (1996). Accumulation of large very low density lipoprotein in plasma during intravenous infusion of a chylomicron-like triglyceride emulsion reflects competition for a common lipolytic pathway. Journal of Lipid Research 37, 7686.CrossRefGoogle ScholarPubMed
Caslake, M. J., Packard, C. J., Gaw, A., Murray, E., Griffin, B. A., Vallance, B. D. & Shepherd, J. (1993). Fenofibrate and LDL heterogeneity in hypercholesterolaemia. Arteriosclerosis & Thrombosis 13, 702711.Google Scholar
Caslake, M. J., Packard, C. J., Series, J. J., Yip, B., Dagen, M. M. & Shepherd, J. (1992). Plasma triglyceride and low density lipoprotein metabolism. European Journal of Clinical Investigation 22, 96104.Google Scholar
Dreon, D. M., Fernstrom, H. A., Miller, B. & Krauss, R. M. (1995). Apolipoprotein E isoform phenotype and LDL subclass response to a reduced fat diet. Arteriosclerosis & Thrombosis 15, 105111.CrossRefGoogle ScholarPubMed
Eisenberg, S. (1985). Preferential enrichment of large-sized very low density lipoprotein population with transferred cholesteryl esters. Journal of Lipid Research 26, 487493.CrossRefGoogle ScholarPubMed
Evans, A. J., Huff, M. W. & Wolfe, B. M. (1989). Accumulation of an apo E-poor subfraction of very low density lipoprotein I hypertriglyceridemic men. Journal of Lipid Research 30, 16911701.CrossRefGoogle Scholar
Frayn, K. N. (1993). Insulin resistance and lipid metabolism. Current Opinion in Lipidology 4, 197204.CrossRefGoogle Scholar
Fisher, R. M., Coppack, S. W., Gibbons, G. F. & Frayn, K. N. (1993). Post-prandial VLDL subfraction metabolism in normal and obese subjects. International Journal of Obesity 17, 263269.Google ScholarPubMed
Griffin, B. A. (1995). Low density lipoprotein heterogeneity. Ballière's Clinical Endocrinology and Metabolism 9, 687703.CrossRefGoogle ScholarPubMed
Griffin, B. A., Freeman, D. J., Tait, G. W., Thomson, J., Caslake, M. M., Packard, C. J. & Shepherd, J. (1994). Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) subfractions: relative contribution of small, dense LDL to coronary heart disease risk. Atherosclerosis 106, 241253.CrossRefGoogle ScholarPubMed
Goldberg, I. J., Ngoc-Anh Le, , Paterniti, J. R. & Ginsberg, H. N. (1982). Lipoprotein metabolism during acute inhibition of hepatic triglyceride lipase in the cymologous monkey. Journal of Clinical Investigation 70, 11841192.CrossRefGoogle Scholar
Guerin, M., Dolphin, P. J. & Chapman, M. J. (1994). A new in vitro method for the simultaneous evaluation of cholesteryl ester exchange and mass transfer between HDL and apo B-containing lipoprotein subspecies. Identification of preferential cholesteryl ester acceptors in human plasma. Arteriosclerosis & Thrombosis 14, 199206.CrossRefGoogle Scholar
Hirano, K., Matsuzawa, Y., Sakai, N., Hiraoka, H., Nozaki, S., Funahashi, T., Yamashita, S., Kubo, M. & Tarui, S. (1992). Polydisperse low-density lipoproteins in hyperalphalipoproteinemic chronic alchohol drinkers in association with marked reduction of cholesteryl ester transfer protein activity. Metabolism 41, 13131318.CrossRefGoogle Scholar
James, R. W. & Pometta, D. (1991). The distribution profiles of very low density and low density lipoproteins in poorly-controlled male, Type 2 (non-insulin dependent) diabetic patients. Diabetologia 34, 246252.CrossRefGoogle ScholarPubMed
Jenkins, D. J. A., Wolever, T. M. S., Vuksan, V., Brighenti, F., Cunnane, S. C., Rao, A. V., Jenkins, A. L., Buckley, G., Patten, R., Singer, W., Corey, P. & Josse, R. G. (1989). Nibbling versus gorging: metabolic advantages of increased meal frequency. New England Journal of Medicine 321, 929934.CrossRefGoogle ScholarPubMed
Karpe, F., Steiner, G., Olivecrona, T., Carlson, L. A. & Hamsten, A. (1993 a). Metabolism of triglyceride-rich lipoproteins during alimentary lipaemia. Journal of Clinical Investigation 91, 748758.CrossRefGoogle Scholar
Karpe, F., Tornvall, P., Olivecrona, T., Steiner, G., Carlson, L. A. & Hamsten, A. (1993 b). Composition of human low density lipoprotein: Effects of postprandial triglyceride-rich lipoproteins, lipoprotein lipase, hepatic lipase and cholesteryl ester transfer protein. Atherosclerosis 98, 3349.CrossRefGoogle ScholarPubMed
Kissebah, A. H. & Schectman, G. (1987). Hormones and lipoprotein metabolism. Ballière's Clinical Endocrinology and Metabolism 1, 699725.CrossRefGoogle ScholarPubMed
Krauss, R. M. & Burke, D. J. (1982). Identification of multiple subclasses of plasma low density lipoproteins in humans. Journal of Lipid Research 23, 97104.CrossRefGoogle Scholar
Lagrost, L., Florentin, E., Guyard-Dangremont, V., Athias, A., Gandjini, H., Lallemant, C. & Gambert, P. (1995). Evidence for nonesterified fatty acids as modulators of neutral lipid transfers in normolipidemic plasma. Arteriosclerosis, Thrombosis and Vascular Biology 15, 13881396.CrossRefGoogle Scholar
Lagrost, L., Gambert, P. & Lallemant, C. (1994). Combined effects of lipid transfers and lipolysis on gradient gel patterns of human plasma LDL. Arteriosclerosis & Thrombosis 14, 13271336.CrossRefGoogle ScholarPubMed
Lahdenpera, S., Syvanne, M., Kahri, J. & Taskinen, M. R. (1996). Regulation of low-density lipoprotein particle size distribution in NIDDM and coronary disease: importance of serum triglycerides. Diabetologia 39, 453461.CrossRefGoogle ScholarPubMed
Lechleitner, M., Hoppichler, F., Foger, B. & Patsch, J. R. (1994). Low-density lipoproteins of the postprandial state induce cellular cholesteryl ester accumulation in macrophages. Arteriosclerosis & Thrombosis 14, 17991807.CrossRefGoogle ScholarPubMed
Lewis, B. F., Uffelman, K. D., Szeto, L. W. & Steiner, G. (1993). Effects of acute hyperinsulinaemia on VLDL triglyceride and VLDL apo B production in normal weight and obese individuals. Diabetes 42, 833842.CrossRefGoogle ScholarPubMed
Lewis, G. F., O'Meara, N. M., Soltys, P. A. & Blackman, J. D. (1991). Fasting hypertriglyceridemia in non-insulin dependent diabetes mellitus is an important predictor of postprandial lipid and lipoprotein abnormalities. Journal of Clinical Enocrinology and Metabolism 72, 934944.CrossRefGoogle ScholarPubMed
Marz, W., Baumstark, M. W., Scarnagi, H., Ruzick, V., Buxbaum, S., Herwig, J., Pohl, T., Russ, A., Schaff, L., Berg, A., Bohles, H.-J., Usadel, K. H. & Grob, W. (1993). Accumulation of small dense low density lipoproteins (LDL) in a homozygous patient with familial defective apolipoprotein B-100. Results from heterogenous interaction of LDL subfractions with the LDL receptor. Journal of Clinical Investigation 92, 29222933.Google Scholar
Meisenbock, G. & Patsch, J. R. (1992). Postprandial hyperlipidemia: the search for the atherogenic lipoprotein. Current Opinion in Lipidology 3, 196201.CrossRefGoogle Scholar
Nichols, A. V. & Smith, L. (1965). Effect of very low density lipoproteins on lipid transfer in incubated serum. Journal of Clinical Investigation 6, 206210.Google Scholar
Nigon, F., Lesnik, P., Rouis, M. & Chapman, M. J. (1991). Discrete subspecies of human low density lipoproteins are heterogeneous in their interaction with the cellular LDL receptor. Journal of Lipid Research 32, 17411753.Google Scholar
Nikkila, M., Solakivi, T., Lehtimaki, T., Koivula, T., Kaippala, P. & Astrm, B. (1994). Postprandial plasma lipoprotein changes in relation to apolipoprotein E phenotypes and low density lipoprotein size in men with and without coronary artery disease. Atherosclerosis 106, 149157.CrossRefGoogle ScholarPubMed
O'Meara, N. M., Lewis, G. F., Cabana, V. G., Iverius, P. H., Getz, G. S. & Polonsky, K. S. (1992). Role of basal triglyceride and high density lipoprotein in determination of postprandial lipid and lipoprotein responses. Journal of Clinical Endocrinology and Metabolism 75, 465471.Google ScholarPubMed
Patsch, J. R., Meisenbock, G., Hopferwieser, T., Muhlberger, V., Knapp, E., Dunn, J. K., Gotto, A. M. & Patsch, W. (1992). Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arteriosclerosis & Thrombosis 12, 13361345.CrossRefGoogle ScholarPubMed
Reaven, G. M., Chen, Y. D. I., Jeppesen, J., Maheux, P. & Krauss, R. M. (1993). Insulin resistance and hyperinsulinaemia in individuals with small, dense low density lipoprotein particles. Journal of Clinical Investigation 92, 141146.CrossRefGoogle ScholarPubMed
Sakai, N., Matsuzawa, Y., Hirano, K., Yamashita, S., Nozaki, S., Ueyama, Y., Kubo, M. & Tarui, S. (1991). Detection of two species of low density lipoprotein particles in cholesteryl ester transfer protein deficiency. Arteriosclerosis & Thrombosis 11, 7179.CrossRefGoogle ScholarPubMed
Schneeman, B. O., Kotite, L., Todd, K. M. & Havel, R. J. (1992). Relationships between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to a fat-containing meal in normolipidemic humans. Proceedings of the National Academy of Sciences USA 90, 20692073.Google Scholar
Shepherd, J. & Packard, C. J. (1987). Metabolic heterogeneity in very low density lipoproteins. American Heart Journal 113, 503508.CrossRefGoogle ScholarPubMed
Superko, H. R. & Krauss, R. M. (1992). Differential effects on nicotinic acid in subjects with different LDL subclass patterns. Atherosclerosis 95, 6976.CrossRefGoogle ScholarPubMed
Tall, A., Sammett, D. & Granot, E. (1986). Mechanisms of enhanced cholesteryl ester transfer from high density lipoproteins to apolipoprotein B-containing lipoproteins during alimentary lipemia. Journal of Clinical Investigation 77, 11631172.CrossRefGoogle ScholarPubMed
Tall, A. R. (1993). Plasma cholesteryl ester transfer protein. Journal of Lipid Research 34, 12551274.CrossRefGoogle ScholarPubMed
Tan, C. E., Forster, L., Caslake, M. J., Bedford, D., Watson, T. D. G., McConnell, M., Packard, J. & Shepherd, J. (1995). Relations between plasma lipids and postheparin plasma lipases and VLDL and LDL subfraction patterns in normolipemic men and women. Arteriosclerosis, Thrombosis and Vascular Biology 15, 18391848.Google Scholar
Tan, K. C. B., Cooper, M. B., Ling, K. L. E., Griffin, B. A., Freeman, D. J., Packard, C. J., Shepherd, J., Hales, C. N. & Betteridge, D. J. (1995). Fasting and postprandial determinants for the occurrence of small, dense LDL species in non-insulin dependent diabetic patients with and without hypertriglyceridaemia: the involvement of insulin, insulin precursor species and insulin resistance. Atherosclerosis 113, 273287.CrossRefGoogle ScholarPubMed
Taskinen, M.-R. (1995). Insulin resistance and lipoprotein metabolism. Current Opinion in Lipidology 6, 153160.Google Scholar
Taskinen, M.-R., Packard, C. J. & Shepherd, J. (1990). Effect of insulin therapy on metabolic fate of apolipoprotein B-containing lipoproteins in NIDDM. Diabetes 39, 10171027.Google Scholar
Watson, T. D. G., Caslake, M. J., Freeman, D. J., Griffin, B. A., Hinnie, J., Packard, C. J. & Shepherd, J. (1994). Determinants of LDL subfraction distribution and concentrations in young normolipidaemic subjects. Arteriosclerosis & Thrombosis 14, 902910.Google Scholar
Zambon, A., Austin, M. A., Brown, B. G., Hokanson, J. E. & Brunzell, J. D. (1993). Effect of hepatic lipase on LDL in normal men and those with coronary heart disease. Arteriosclerosis & Thrombosis 13, 147153.Google Scholar
Zilversmit, D. B. (1979). Atherogenesis: a postprandial phenomenon. Circulation 60, 473485.CrossRefGoogle ScholarPubMed