Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T09:58:56.488Z Has data issue: false hasContentIssue false

Immunological manipulation of growth

Published online by Cambridge University Press:  28 February 2007

J. M. Pell
Affiliation:
Department of Cellular Physiology, Babraham Institute, Cambridge CB2 4AT
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Regulation of nitrogen retention in farm animals’
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Aston, R., Rathjen, D. A., Holder, A. T., Bender, V., Trigg, T. E., Cowan, K., Edwards, J. A. & Cowden, W. B. (1991). Antigenic structure of bovine growth hormone: location of a growth enhancing region. Molecular Immunology 28, 4150.CrossRefGoogle ScholarPubMed
Baxter, R. C. & Martin, J. L. (1989). Structure of the Mr 140,000 growth hormone-dependent insulin-like growth factor binding protein complex: determination by reconstitution and affinity labeling. Proceedings of the National Academy of Sciences USA 86, 6878–4902.CrossRefGoogle Scholar
Boulanger, L., Roughly, P. & Gaudreau, P. (1992). Catabolism of rat growth hormone-releasing factor(1–29) amide in rat serum and liver. Peptides 13, 681689.CrossRefGoogle ScholarPubMed
Campbell, R. M., Lee, Y., Rivier, J., Heimer, L. P., Felix, A. M. & Mowles, T. F. (1991). GRF analogs and fragments: correlation between receptor binding, activity and structure. Peptides 12, 569574.CrossRefGoogle ScholarPubMed
Campbell, R. M., Stricker, P., Miller, R., Bonger, J., Liu, W., Lambros, T., Ahmad, M., Felix, A. M. & Heimer, E. P. (1994). Enhanced stability and potency of novel growth hormone-releasing factor (GRF) analogues derived from rodent and human GRF sequences. Peptides 15, 489495.CrossRefGoogle ScholarPubMed
Charlton, H. M., Clark, R. G., Robinson, I. C. A. F., Porter Goff, A. E., Cos, B. S., Bugnon, C. & Bloch, B. A. (1988). Growth hormone-deficient dwarfism in the rat: a new mutation. Journal of Endocrinology 119, 5158.CrossRefGoogle Scholar
Clore, G. M., Martin, S. R. & Gronenborn, A. M. (1986). Solution structure of human growth hormone releasing factor. Combined use of circular dichroism and nuclear magnetic resonance spectroscopy. Journal of Molecular Biology 191, 553561.CrossRefGoogle ScholarPubMed
Daughaday, W. H. & Rotwein, P. (1989). Insulin-like growth factor-I and factor-II-peptide, messenger ribonucleic-acid and gene structures, serum, and tissue concentrations. Endocrine Reviews 10, 6891.CrossRefGoogle Scholar
De Vos, A. M., Ultsch, M. & Kossiakoff, A. A. (1992). Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306312.CrossRefGoogle ScholarPubMed
Elsaesser, G. & Drath, S. (1995). The potential of immunoneutralization against somatostatin for improving pig performance. Livestock Production Science 42, 255263.CrossRefGoogle Scholar
Gardner, M. J., Morrison, C. J., Stevenson, L. Q. & Flint, D. J. (1990). Production of an anti-idiotypic antisera to rat GH antibodies capable of binding to GH receptors and increasing body weight gain in hypophysectomised rats. Journal of Endocrinology 125, 5559.CrossRefGoogle Scholar
Geysen, H. M., Meloen, R. H. & Barteling, S. J. (1984). Use of peptide-synthesis to probe viral-antigens for epitopes to a resolution of a single amino-acid. Proceedings of the National Academy of Sciences USA 81, 39984002.CrossRefGoogle ScholarPubMed
Glencross, R. G., Lovell, R. D. & Holder, A. T. (1993). Monoclonal antibody enhancement of FSH-induced uterine growth in Snell dwarf mice. Journal of Endocrinology 136, R5R7.CrossRefGoogle ScholarPubMed
Goodfriend, T. L., Webster, M. E. & McGuire, J. S. (1970). Complex effects of antibodies to polypeptide hormones. Journal of Clinical Endocrinology 30, 565572.CrossRefGoogle ScholarPubMed
Gray, R. S., Cowan, P., di Mario, J., Elson, R. A., Clarke, B. F. & Duncan, L. J. P. (1985). Influence of insulin antibodies on pharmacokinetics and bioavailability of recombinant human and highly purified beef insulins in insulin dependent diabetics. British Medical Journal 290, 16871692.CrossRefGoogle ScholarPubMed
Hill, R. A., Flick-Smith, H. C., Dye, S. & Pell, J. M. (1997). Actions of an IGF-I-enhancing antibody on IGF-I phar- macokinetics and tissue distribution: increased IGF-I bioavailability. Journal of Endocrinology 152, 123130.CrossRefGoogle Scholar
Holder, A. T., Aston, R., Preece, M. & Ivanyi, J. (1985). Monoclonal antibody mediated enhancement of growth hormone activity in vivo. Journal of Endocrinology 107, R9R12.CrossRefGoogle ScholarPubMed
Holder, A. T., Aston, R., Rest, J. R., Hill, D. J., Patel, N. & Ivanyi, J. (1987). Monoclonal antibodies can enhance the biological activity of thyrotropin. Endocrinology 120, 567673.CrossRefGoogle ScholarPubMed
Holder, A. T., Morrell, D. J., Lovell, R. D. & Aston, R. (1989). Growth hormone activity is enhanced when covalently linked to large protein. Journal of Endocrinology 123, Suppl. 126.Google Scholar
Jones, J. I. & Clemmons, D. R. (1995). Insulin-like growth factors and their binding proteins: biological actions. Endocrine Reviews 16, 334.Google ScholarPubMed
Kaiser, E. T. & Kezdy, F. J. (1984). Amphiphilic secondary structure: design of peptide hormones. Science 223, 249255.CrossRefGoogle ScholarPubMed
Liu, J.-P., Baker, J., Perkins, A. S., Robertson, E. J. & Efstratiadis, A. (1993). Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-l)and type 1 IGF receptor (Igflr). Cell 75, 5972.Google Scholar
Massart, S., Maiter, D., Portetelle, D., Adam, E., Renaville, R. & Ketelslegers, J.-M. (1993). Monoclonal antibodies to bovine growth hormone (GH) potentiate hormonal activity in vivo by enhancing GH binding to hepatic somatogenic membranes. Journal of Endocrinology 139, 383393.CrossRefGoogle Scholar
Mazza, M. M. & Retegui, L. A. (1989). Monoclonal antibodies to human growth hormone induce an allosteric conformational change in the antigen. Immunology 67, 148153.Google ScholarPubMed
Pell, J. M. & Aston, R. (1991). Active immunisation with a synthetic peptide region of growth hormone: increased lean tissue growth. Journal of Endocrinology 131, R1R4.CrossRefGoogle ScholarPubMed
Pell, J. M. & Aston, R. (1995). Principles of immunomodulation. Livestock Production Science 42, 123133.CrossRefGoogle Scholar
Pell, J. M. & James, S. (1995). Immuno-enhancement and -inhibition of GH-releasing factor by site-directed anti- peptide antibodies in vivo and in vitro. Journal of Endocrinology 146, 535541.CrossRefGoogle ScholarPubMed
Pell, J. M., Johnsson, I. D., Pullar, R. A., Morrell, D. J., Hart, I. C., Holder, A. T. & Aston, R. (1989). Potentiation of growth hormone activity in sheep using monoclonal antibodies. Journal of Endocrinology 120, R15R18.CrossRefGoogle ScholarPubMed
Powell-Braxton, L., Hollingshead, P., Warburton, C., Dowd, M., Pitts-Meek, S., Dalton, D., Gillett, N. & Stewart, T. A. (1993). IGF-I is required for normal embryonic growth in mice. Genes and Development 7, 26092717.CrossRefGoogle ScholarPubMed
Rathjen, D. A., Murphy, L. J. & Aston, R. (1992). Selective enhancement of the tumour necrotic activity of TNF- alpha with monoclonal antibody. British Journal of Cancer 65, 852856.CrossRefGoogle ScholarPubMed
Rechler, M. M. (1994). Insulin-like growth factor binding proteins. Vitamins and Hormones 47, 1114.Google Scholar
Shechter, Y., Hernaez, L., Schlessinger, J. & Cuatrecasas, P. (1979). Local aggregation of hormone-receptor complexes is required for activation by epidermal growth factor. Nature, 278, 835838.CrossRefGoogle Scholar
Spencer, G. S. G., Garssen, G. J. & Hart, I. C. (1985 a). A novel approach to growth promotion using autoimmunization against somatostatin. II. Effects on growth and hormone levels in lambs. Livestock Production Science 10, 2537.CrossRefGoogle Scholar
Spencer, G. S. G., Garssen, G. J. & Hart, I. C. (1985 b). A novel approach to growth promotion using autoimmunization against somatostatin II. Effects on appetite, carcass composition and food utilization in the lamb. Livestock Production Science 10, 469477.CrossRefGoogle Scholar
Stewart, C. E. H., Bates, P. C., Calder, T. A., Woodall, S. M. & Pell, J. M. (1993). Potentiation of insulin-like growth factor-I (IGF-I) activity by an antibody: supportive evidence for enhancement of IGF-I bioavailability in vivo by IGF binding proteins. Endocrinology 133, 14621465.CrossRefGoogle ScholarPubMed
Su, C.-M., Jensen, L. R., Heimer, E. P., Felix, A. M., Pan, Y.-C. E. & Mowles, T. F. (1991). In vitro stability of growth hormone releasing (GRF) factor analogs in porcine plasma. Hormone and Metabolic Research 23, 1521.CrossRefGoogle ScholarPubMed
Wang, B. S., Lumanglas, A. L., Szewczyk, E., McWilliams, W., Loullis, C. C. & Hart, I. C. (1992). A proposed mechanism of action of a growth hormone-specific monoclonal antibody in the enhancement of hormonal activity. Molecular Immunology 29, 313317.CrossRefGoogle ScholarPubMed
Westbrook, S. L., Chandler, K. D. & McDowell, G. H. (1993). Immunization of pregnant ewes against somatotropin release inhibiting factor increases growth in twin lambs. Australian Journal of Agricultural Research 44, 229238.CrossRefGoogle Scholar
Westbrook, S. L. & McDowell, G. H. (1995). Passively acquired antibodies to somatostatin alter the secretion of gastric acid and enhance the growth of sucking piglets. Proceedings of the Nutrition Society of Australia 19, 183.Google Scholar