Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T23:01:31.053Z Has data issue: false hasContentIssue false

Genetic polymorphisms and lipoprotein responses to diets

Published online by Cambridge University Press:  19 December 2008

Stephanie Vincent
Affiliation:
Unité 476-Human Nutrition and Lipids at INSERM (National Institute of Health and Medical Research), 18 Avenue Mozart, 13009 Marseille, France
Richard Planells
Affiliation:
Unité 476-Human Nutrition and Lipids at INSERM (National Institute of Health and Medical Research), 18 Avenue Mozart, 13009 Marseille, France
Catherine Defoort
Affiliation:
Unité 476-Human Nutrition and Lipids at INSERM (National Institute of Health and Medical Research), 18 Avenue Mozart, 13009 Marseille, France
Marie-Christine Bernard
Affiliation:
CDPA, CHU Timone, Marseille, France
Mariette Gerber
Affiliation:
CRLC Val d'Aurelle, Montpellier, France
Joanne Prudhomme
Affiliation:
ORS, Marseille, France
Philippe Vague
Affiliation:
CDPA, CHU Timone, Marseille, France
Denis Lairon*
Affiliation:
Unité 476-Human Nutrition and Lipids at INSERM (National Institute of Health and Medical Research), 18 Avenue Mozart, 13009 Marseille, France
*
*Corresponding author: Denis Lairon, fax +33 4 91 75 15 62, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Résumé

Alors que l'alimentation de l'homme a beaucoup évoluée depuis ses origines, le génome humain est resté très stable. Pourtant, de très nombreux gènes ont des polymorphismes connus. En fait, on considère maintenant que les principales pathologies humaines (maladies cardiovasculaires, diabète, obésité et cancers) résultent d'une interaction entre des facteurs de succeptibilité génétique et des facteurs de l'environement, dont l'alimentation. Dans le domaine du métabolisme des lipoprotéines et des maladies cardiovasculaires, des polymorphimes de plusieurs gènes ont été identifiés et associés aux niveaux des paramètres lipidiques ou aà des réponses variables aux régimes, comme pour les apoprotéines (apo) E, B, A-IV et C-III, le LDL récepteur, la protéine microsomiale de transport (MTP), la protéine de liason des acides gras (FABP), la protéine de transport des esters de cholésterol (CETP), la lipoprotéine lipase ou la lipase hepatique. Nous réalisons une étude d'intervention à Marseille dans le but d'étudier l'interaction

Type
Symposium on ‘Nutrition in the post-genomic era’ Plenary session 3: Genetic variation and response to food
Copyright
Copyright © The Nutrition Society 2002

References

Agren, JJ, Valve, R, Vidgren, H, Laakso, M & Uusitupa, M (1998) Postprandial lipemic response is modified by the polymorphism at codon 54 of the fatty acid-binding protein 2 gene. Arteriosclerosis, Thrombosis and Vascular Biology 18, 16061610.CrossRefGoogle ScholarPubMed
Baïer, LJ, Sacchettini, JC, Knowler, WC, Eads, J, Paolisso, G, Tataranni, PA, Mochizuki, H, Bennett, PH, Bogardus, C & Prochazka, M (1995) An amino acid substitution in the human intestinal fatty acid-binding protein is associated with increased fatty acid binding, increased fat oxidation and insulin resistance. Journal of Clinical Investigation 95, 12811287.CrossRefGoogle ScholarPubMed
Brown, MS & Goldstein, JL (1974) Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme-A reductase-activity. Proceedings of the National Academy of Sciences USA 71, 788792.CrossRefGoogle ScholarPubMed
Cordain, L, Miller, JB, Eaton, SB, Mann, N, Holt, SHA & Speth, JD (2000) Plant-animal subsistence ratios and macronutrient energy estimations in worldwide hunter-gatherer diets. American Journal of Clinical Nutrition 71, 682692.CrossRefGoogle ScholarPubMed
Corella, D, Tucker, K, Lahoz, C, Coltell, O, Cupples, LA, Wilson, PWF, Schaefer, EJ & Ordovas, JM (2001) Alcohol drinking determines the effect of the APOE locus on LDL-cholesterol concentrations in men: the Framingham Offspring study 1-3. American Journal of Clinical Nutrition 73, 736745.CrossRefGoogle Scholar
Dreon, DM, Femstrom, HA, Miller, B & Krauss, RM (1995) Apolipoprotein E isoform phenotype and LDL subclass response to a reduced fat diet. Arteriosclerosis, Thrombosis and Vascular Biology 15, 105111.CrossRefGoogle ScholarPubMed
Erkkilä, AT, Sarkkinen, ES, Lindi, V, Lehto, S, Laakso, M & Uusitupa, MIJ (2001) APOE polymorphism and the hypertriglyceridemic effect of dietary sucrose. American Journal of Clinical Nutrition 73, 746752.CrossRefGoogle ScholarPubMed
Fumeron, F, Betoulle, D, Luc, G, Behague, I, Ricard, B, Poirier, O, Jemaa, R, Evans, A, Arveiler, D, Marques-Vidal, P, Bard, JM, Fruchart, JC, Ducimetière, P, Apfelbaum, M & Cambien, F (1995) Alcohol intake modulates the effect of a polymorphism of the cholesteryl ester transfer protein gene on plasma high density lipoprotein and the risk of myocardial infarction. Journal of Clinical Investigation 96, 16641671.CrossRefGoogle ScholarPubMed
Gerdes, C, Fisher, RM, Nicaud, V, Boer, J, Humphries, SE, Talmud, PJ & Faergeman, O (1997) Lipoprotein lipase variants D9N and 291S are associated with increased plasma triglyceride and lower high-density lipoprotein cholesterol concentrations. Study in the fasting and postprandial states; the European atherosclerosis research studies. Circulation 96, 733740.CrossRefGoogle Scholar
Gregg, RE & Wetterau, JR (1994) The molecular basis of abetalipoproteinemia. Current Opinion in Lipidology 5, 8186.CrossRefGoogle ScholarPubMed
Hegele, RA (1998) A review of intestinal fatty acid binding protein gene variation and the plasma lipoprotein response to dietary components. Clinical Biochemistry 31, 609612.CrossRefGoogle ScholarPubMed
Hegele, RA, Xolever, TM, Story, JA, Connelly, PW & Jenkins, DJ (1997) Intestinal fatty acid-binding protein variation is associated with variation in the response of plasma lipoproteins to dietary fibre. European Journal of Clinical Investigation 27, 857862.CrossRefGoogle ScholarPubMed
Hixson, JE & Vernier, DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. Journal of Lipid Research 31, 545548.CrossRefGoogle ScholarPubMed
Hockey, KJ, Anderson, RA, Cook, VR, Hantgan, RR & Weinberg, RB (2001) Effect of the apolipoprotein A-IV Q360H polymorphism on postprandial plasma triglyceride clearance. Journal of Lipid Research 42, 211217.CrossRefGoogle ScholarPubMed
Humphries, SE, Talmud, PJ, Cox, C, Sutherland, W & Mann, J (1996) Genetic factors affecting the consistency and magnitude of changes in plasma cholesterol in response to dietary challenge. Quarterly Journal of Medicine 89, 671680.CrossRefGoogle ScholarPubMed
Jansen, H, Chu, G, Ehnholm, C, Dallongeville, J, Nicaud, V & Talmud, PJ (1999) The T allele of the hepatic lipase promoter variant C-480T is associated with increased fasting lipids and HDL and increased preprandial and postprandial LpCIII:B: European Atherosclerosis Research Study (EARS) II. Arteriosclerosis, Thrombosis and Vascular Biology 19, 303308.CrossRefGoogle Scholar
Karpe, F, Lundahl, B, Ehrenborg, E, Eriksson, P & Hamsten, A (1998) A common functional polymorphism in the promoter region of the microsomal triglyceride transfer protein gene influences plasma LDL levels. Arteriosclerosis, Thrombosis and Vascular Biology 18, 756761.CrossRefGoogle ScholarPubMed
Lindquist, CH, Gower, BA & Goran, MI (2000) Role of dietary factors in ethnic differences in early risk of cardiovascular disease and type 2 diabetes. American Journal of Clinical Nutrition 71, 725732.CrossRefGoogle ScholarPubMed
Lopez-Miranda, J, Ordovas, JM, Ostos, MA, Marin, C, Jansen, S, Salas, J, Blanco-Molina, A, Jimenez-Pereperez, JA, Lopez-Segura, F & Perez-Jimenez, F (1997) Dietary fat clearance in normal subjects is modulated by genetic variation at the apolipoprotein B gene locus. Arteriosclerosis, Thrombosis and Vascular Biology 17, 17651773.CrossRefGoogle ScholarPubMed
Martin, A (2001) Apports Nutritionnels Recommandés à la Population Française.Paris: Lavoisier Tec et Doc.Google Scholar
Mero, N, Suurinkeroinen, L, Syvänne, M, Knudsen, P, Yki-Järvinnen, H & Taskinen, MR (1999) Delayed clearance of postprandial large TG-rich particles in normolipidemic carriers of LPL Asn 291Ser gene variant. Journal of Lipid Research 40, 16631670.CrossRefGoogle Scholar
Ordovas, JM (2001) Genetics, postprandial lipemia and obesity. Nutrition Metabolism and Cardiovascular Disease 11, 118133.Google ScholarPubMed
Ostos, MA, Lopez-Miranda, J, Ordovas, JM, Marin, C, Blanco, A, Castro, P, Lopez-Segura, F, Jimenez-Pereperez, J & Perez-Jimenez, F (1998) Dietary fat clearance is modulated by genetic variation in apolipoprotein A-IV gene locus. Journal of Lipid Research 39, 24932500.CrossRefGoogle ScholarPubMed
Pratley, RE, Baier, L, Pan, DA, Salbe, AD, Storlien, L, Ravussin, E & Bogardus, C (2000) Effects of an Ala54Thr polymorphism in the intestinal fatty acid-binding protein on responses to dietary fat in humans. Journal of Lipid Research 41, 20022008.CrossRefGoogle ScholarPubMed
Rantala, M, Rantala, TT, Savolainen, MJ, Friedlander, Y & Kesäniemi, YA (2000) Apolipoprotein B gene polymorphisms and serum lipids: meta-analysis of the role of genetic variation in responsiveness to diet. American Journal of Clinical Nutrition 71, 713724.CrossRefGoogle ScholarPubMed
Reznik, Y, Pousse, P, Herrou, M, Morello, R, Mahoudean, J, Drosolowsky, MA & Fradiu, S (1996) Postprandial lipoprotein metabolism in normotriglyceridemic non-insulin-dependent diabetic patients: influence if apolipoprotein E polymorphism. Metabolism: Clinical and Experimental 45, 6371.CrossRefGoogle ScholarPubMed
Salas, J, Jansen, S, Lopez-Miranda, J, Ordovas, JM, Castro, P, Marin, C, Ostos, MA, Bravo, MD, Jimenez-Pereperez, J, Blanco, A, Lopez-Segura, F & Perez-Jimenez, F (1998) The SstI polymorphism of the apolipoprotein C-III gene determines the insulin response to an oral-glucose-tolerance test after consumption of a diet rich in saturated fats. American Journal of Clinical Nutrition 68, 396401.CrossRefGoogle Scholar
Schaefer, EJ, Lamon-Fava, S, Johnson, S, Ordovas, JM, Schaefer, MM, Castelli, WP & Wilson, PWF (1994) Effects of gender and menopausal status on the association of apolipoprotein E phenotype with plasma lipoprotein levels. Results from the Framingham Offspring Study. Arteriosclerosis and Thrombosis 14, 11051113.CrossRefGoogle ScholarPubMed
Senti, M, Bosch, M, Aubo, C, Elosua, R & Marrugat, J (2000) Relationship of abdominal adiposity and dyslipemic status in women with a common mutation in the lipoprotein lipase gene. The REGICOR investigators. Atherosclerosis 150, 135141.CrossRefGoogle ScholarPubMed
Sing, CF & Davignon, J (1985) Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation. American Journal of Human Genetics 37, 268285.Google ScholarPubMed
Van't Hooft, FM, Jormsjo, S, Lundahl, B, Tornvall, P, Eriksson, P & Hamsten, A (1999) A functional polymorphism in the apolipoprotein B promoter that influences the level of plasma low density lipoprotein. Journal of Lipid Research 40, 16861694.CrossRefGoogle ScholarPubMed
Vialettes, B, Reynier, P, Atlan-Gepner, C, Mekki, N, Lesluyes-Mazzochi, L, Luc, G, Lairon, D & Malthiery, Y (2000) Dietary fat clearance in type V hyperlipoproteinaemia secondary to a rare variant of human apolipoprotein E: the apolipoprotein E3 (Arg136Ser). British Journal of Nutrition 83, 615622.CrossRefGoogle Scholar
Weggemans, RM, Zock, PL, Meyboom, S, Funke, H & Katan, MB (2000) Apolipoprotein A4-1/2 polymorphism and response of serum lipids to dietary cholesterol in humans. Journal of Lipid Research 41, 16231628.CrossRefGoogle Scholar
Weinberg, RB (1999) Apolipoprotein A-IV-2 allele: association of its worldwide distribution with adult persistence of lactase and speculation on its function and origin. Genetic Epidemiology 17, 285297.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Weinberg, RB, Geissinger, BW, Kasala, K, Hockey, KJ, Terry, JG, Easter, L & Crouse, JR (2000) Effect of apolipoprotein A-IV genotype and dietary fat on cholesterol absorption in humans. Journal of Lipid Research 41, 20352041.Google ScholarPubMed
Ye, QS & Kwiterowitch, PO (2000) Influence of genetic polymorphisms on responsiveness to dietary fat and cholesterol. American Journal of Clinical Nutrition 72, Suppl., 1275S-1284S.CrossRefGoogle ScholarPubMed