Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T12:45:00.552Z Has data issue: false hasContentIssue false

Genetic Modification of Fibre Digestion

Published online by Cambridge University Press:  28 February 2007

Harry J. Gilbert
Affiliation:
Department of Agricultural Biochemistry and Nutrition, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU
Geoffrey P. Hazlewood
Affiliation:
Department of Biochemistry, AFRC Institute of Animal Physiology and Genetics Research Department, Babraham, Cambridge CB2 4AT
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Fibre digestion in farm livestock’
Copyright
The Nutrition Society

References

Asmundson, R. V. & Kelly, W. J. (1987). Isolation and characterisation of plasmid DNA from Ruminococcus. Current Microbiology 16, 97100.CrossRefGoogle Scholar
Bates, E. E. M. (1990). The genetic manipulation of Lactobacillus plantarum. PhD Thesis. University of Newcastle.Google Scholar
Bates, E. E. M. & Gilbert, H. J. (1989). Analysis of cryptic plasmid from Lactobacillus Plantarum. Gene 85, 253258.CrossRefGoogle Scholar
Bates, E. E. M., Gilbert, H. J., Hazlewood, G. P., Huckle, J., Laurie, J. I. & Mann, S. P. (1989). Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Applied and Environmental Microbiology 55, 20952097.CrossRefGoogle ScholarPubMed
Bauchop, T. (1981). The anaerobic fungi in rumen fibre digestion. Agriculture and Environment 6, 339348.Google Scholar
Báguin, P. (1990). Modecular biology of cellulose degradation. Annual Review of Microbiology 44, 219248.Google Scholar
Béguin, P., Millet, J., Chauvaux, S., Yague, E., Tomme, P. & Aubert, J. -P.. (1989). In Enzyme Systems for Lignocellulose Degradation, pp. 5772 [Loughlan, M. P, editor]. London and New York: Elsevier.Google Scholar
Bérenger, J. -F.., Frixon, C., Bigliardi, J. & Creuzet, N. (1985). Production. purification and properties of thermostable xylanase from Clostridium stercorarium. Canadian Journal of Microbiology 31, 635643.Google Scholar
Blaxter, K. L. (1962). The Energy Metabolism of Ruminants. London: Hutchinson.Google Scholar
Carne, T. & Sheele, G. (1984). In The Secretory Process, pp. 256284 [Cantin, M, editor]. London: Academic Press.Google Scholar
Chauvaux, S., Béguin, P., Aubert, J. -P.., Bhat, K. M., Gow, L. A., Wood, T. M. & Bairoch, A. (1989). Calcium-binding affinity and calcium-enhanced activity of Clostridium thermocellum endoglucanase D. Biochemical Journal 265, 261265.CrossRefGoogle Scholar
Chen, C. M., Gritzali, M. & Stafford, D. W. (1987). Nucleotide sequence and deduced primary structure of cellobiohydrolase II from Trichoderma reesei. Biol Technology 5, 274278.CrossRefGoogle Scholar
Creuzet, N., Bérenger, J. -F. & Frixon, C. (1983). Characterization of exoglucanase and synergistic hydrolysis of cellulose in Clostridium stercorarium. FEMS Microbiology Letters 20, 347350.CrossRefGoogle Scholar
Dekker, R. F. H. (1985). In Biosynthesis and Biodegradation of Wood Components, pp. 505533 [Higuchi, T, editor]. Orlando: Academic Press Inc.CrossRefGoogle Scholar
Demeyer, D. I. (1981). Rumen microbes and digestion of plant cell walls. Agriculture and Environment 6, 295337.Google Scholar
Deshpande, V., Lachke, A., Mishra, C., Keskar, S. & Rao, M. (1986). Mode of action and properties of xylanase and β-xylosidase from Neurospora crassa. Biotechnology and Bioengineering 28, 18321838.Google Scholar
Durrant, A. J., Hall, J., Hazlewood, G. P. & Gilbert, H. J. (1991). The non-catalytic C-terminal region of endoglucanase E from Clostridium thermocellum contains a cellulose-binding domain. Biochemical Journal 273, 289293.Google Scholar
Eriksson, K. -E. & Pettersson, B. (1982). Purification and partial characterization of two acidic proteases from the white-rot fungus Sporotrichum Pulverulentum. European Journal of Biochemistry 124, 635642.CrossRefGoogle ScholarPubMed
Ferreira, L. M. A., Durrant, A. J., Hall, J., Hazlewood, G. P. & Gilbert, H. J. (1990). Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Biochemical Journal 269, 261264.CrossRefGoogle Scholar
Flint, H. J., Bisset, J. & Webb, J. (1989). Use of antibiotic-resistance mutations to track strains of obligately anaerobic bacteria introduced into the rumen of sheep. Journal of Applied Bacteriology 67, 177183.Google Scholar
Fukumori, F., Kudo, T., Sashihara, N., Nagata, Y., Ito, K. & Horikoshi, K. (1989). The third cellulase of alkalophilic Bacillus sp. N-4: evolutionary relationship within the cel gene family. Gene 76, 289298.Google Scholar
Fukumori, F., Sashihara, N., Kudo, T. & Horikoshi, K. (1986). Nucleotide sequence of two cellulase genes from alkalophilic Bacillus sp. strain N-4 and their strong homology. Journal of Bacteriology 168, 479485.Google Scholar
Ghangas, G. S. & Wilson, D. B. (1988). Cloning of the Thermonospora fusca cellulase gene E2 in Streptomyces lividans: Affinity purification and functional domains of the cloned gene product. Applied and Environmental Microbiology 54, 25212526.Google Scholar
Gilbert, H. J. & Hall, J. (1987). Molecular cloning of Streptococcus bovis lactose catabolic genes. Journal of General Microbiology 133, 22852293.Google Scholar
Gilbert, H. J., Hall, J., Hazlewood, G. P. & Ferreira, L. M. A. (1990). The N-terminal region of an endoglucanase from Pseudomonas fluorescens subspecies cellulosa constitutes a cellulose binding domain which is distinct from the catalytic centre. Molecular Microbiology 4, 759767.Google Scholar
Gilbert, H. J., Sullivan, D. A., Jenkins, G., Kellett, L. E., Minton, N. P. & Hall, J. (1988). Molecular cloning of multiple xylanase genes from Pseudomonas fluorescens subspecies cellulosa. Journal of General Microbiology 134, 32393247.Google Scholar
Gilkes, N. R., Warren, R. A. J., Miller, R. C. Jr & Kilburn, D. G. (1988). Precise excision of the cellulose binding domains from two Cellulomonas funi cellulases by a homologous protease and the effect on catalysis. Journal of Biological Chemistry 263, 1040110407.Google Scholar
Gomez Cabrera, A. & Van der Meer, J. M. (1988). Rate of degradation of organic matter and neutral-detergent in barley straw: effect of genetic variation and treatment with ammonia on degradation in sacco and in vitro. Netherlands Journal of Agricultural Science 36, 108110.CrossRefGoogle Scholar
Gorbacheva, I. V. & Rodionova, N. A. (1977). Studies on xylan degrading enzymes. I. Purification and characterization of endo-1, 4-β-xylanase from Asperfgillus niger str. 14. Biochimica et Biophysica Acta 484, 7993.Google Scholar
Grépinet, O., Chebrou, M. -C. & Béguin, P. (1988). Nucleotide sequence and deletion analysis of the xylanase gene xynZ of Clostridium thermocellum. Journal of Bacteriology 170, 45824588.CrossRefGoogle ScholarPubMed
Hall, J. & Gilbert, H. J. (1988). The nucleotide sequence of a carboxymethylcellulase gene from Pseudomonas fluorescens subsp. cellulosa. Molecular and General Genetics 213, 112117.CrossRefGoogle ScholarPubMed
Hall, J., Hazlewood, G. P., Barker, P. J. & Gilbert, H. J. (1988). Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69, 2938.CrossRefGoogle Scholar
Hall, J., Hazlewood, G. P., Huskisson, N. S., Durrant, A. J. & Gilbert, H. J. (1989). Nucleotide sequence of a xylanase gene from Pseudomonas fluorescens subspecies cellulosa. Molecular Microbiology 3, 12111219.CrossRefGoogle ScholarPubMed
Hall, J., Hazlewood, G. P., Surani, M. A., Hirst, B. H. & Gilbert, H. J. (1990). Eukaryotic and prokaryotic signal peptides direct secretion of a bacterial endoglucanase by mammalian cells. Journal of Biological Chemistry 265, 1999619999.Google Scholar
Hamamoto, T., Honda, H., Kudo, T. & Horikoshi, K. (1987). Nucleotide sequence of the xylanase A gene of alkalophilic Bacillus sp. C-125. Agricultural Biological Chemistry 51, 953955.Google Scholar
Hazlewood, G. P., Davidson, K., Laurie, J. I., Romaniec, M. P. M. & Gilbert, H. J. (1990). Cloning and sequencing of the celA gene encoding endoglucanase A of Butyrivibrio fibrisolvens strain A46. Journal of General Microbiology 136, 20892097.Google Scholar
Hazlewood, G. P., Romaniec, M. P. M., Davidson, K., Grépinet, O., Béguin, P., Millet, J., Raynaud, O. & Aubert, J. -P.. (1988). A catalogue of Clastridium thermocellum endoglucanase, β-glucosidase and xylanase genes cloned in Escherichia coli. FEMS Microbiology Letters 51, 231236.CrossRefGoogle Scholar
Hesselman, K. & Aman, P. (1986). The effect of β-glucanase on the utilization of starch and nitrogen by broiler chickens fed on barley of low or high viscosity. Animal Feed Science and Technology 15, 8993.Google Scholar
Huhtanen, P., Hissa, K., Jaakkola, S. & Poutianinen, E. (1985). Enzymes as silage additive. Effect on fermentation quality, digestibility in sheep, degradability in sacco and performance in growing cattle. Journal of Agricultural Science (Finland) 57, 284292.Google Scholar
Johnson, R. R. (1976). Influence of carbohydrate solubility on non-protein nitrogen utilization in the ruminant. Journal of Animal Science 43, 184191.CrossRefGoogle ScholarPubMed
Jorgensen, O. B. & Cowan, D. (1989). In Enzyme Systems for Lignocellulose Degradation, pp. 347369 [Coughlan, M. P., editor]. London and New York: Elsevier Applied Science.Google Scholar
Kellett, L. E., Poole, D. M., Ferreira, L. M. A., Durrant, A. J., Hazlewood, G. P. & Gilbert, H. J. (1990). Xylanase B and an arabinofuranosidase from Pseudomonas fluorescens ssp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes. Biochemical Journal 272, 369376.Google Scholar
Knowles, J., Teeri, T. T., Lehtovaara, P., Penttila, M. & Saloheimo, M. (1988). In Biochemistry and Genetics of Cellulose Degradation, pp. 153169 [Aubert, J. -P., Béguin, P. and Millet, J., editors]. London: Academic Press.Google Scholar
Lamed, R. & Bayer, E. A. (1988). The Cellulosome of Clostridium thermocellum. Advances in Applied Microbiology 33, 146.Google Scholar
Lamed, R., Setter, E. & Bayer, E. A. (1983). Characterization of a cellulose binding, cellulose–containing complex in Clostridium thermocellum. Journal of Bacteriology 156, 828836.Google Scholar
Lee, S. F. & Forsberg, C. W. (1987). Purification and characterization of an α-L- arabinofuranosidase from Clostridium acetyobutylicum. Canadian Journal of Microbiology 33, 10111016.CrossRefGoogle Scholar
Lockington, R. A., Attwood, G. T. & Brooker, J. D. (1988). Isolation and characterization of a temperate bacteriophage from the ruminal anaerobe Selenomas ruminantium. Applied and Environmental Microbiology 54, 15751580.CrossRefGoogle Scholar
Lowe, S. E., Theodorou, M. K., Trinci, A. P. J. & Hespell, R. B. (1985). Growth of anaerobic rumen fungi on defined and semi-defined media lacking rumen fluid. Journal of General Microbiology 131, 22252229.Google Scholar
Luchansky, J. B., Muriana, P. M. & Klaenhammer, T. R. (1988). Application of electroporation for transfer of plasmid DNA to Lactobacillus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Molecular Microbiology 2, 637646.Google Scholar
L¨uthi, E., Love, D. R., McAnulty, J., Wallace, C., Caughey, P. A., Saul, D. & Bergquist, P. L. (1990). Xylanase from the extremely thermophilic bacterium Caldocellum saccharolyticum: overexpression of the gene in Escherichia coli and characterization of the gene product. Applied and Environmental Microbiology 56, 10171024.Google Scholar
McGavin, M. J., Forsberg, C. W., Crosby, B., Bell, A. W., Dignard, D. & Thomas, D. Y. (1989). Structure of the cel-3. gene from Fibrobacter succinogenes S85 and characteristics of the encoded gene product, endoglucanase 3. Journal of Bacteriology 171, 55875595.Google Scholar
Mann, S. P., Hazlewood, G. P. & Orpin, C. G. (1986). Characterization of a cryptic plasmid (pOM1) in Butyrivibrio fibrisolvens by restriction endonuclease analysis and its cloning in Escherichia coli. Current Microbiology 13, 1722.Google Scholar
Martin, S. A. & Dean, R. G. (1989). Characterization of a Plasmid from the ruminal bacterium Selenomonas ruminantium. Applied and Environmental Microbiology 55, 30353038.CrossRefGoogle ScholarPubMed
Ohmiya, K., Kajino, T., Kato, A. & Shimizu, S. (1989). Structure of a Ruminococcus albus endo-1, 4-β-glucanase gene. Journal of Bacteriology 171, 67716775.Google Scholar
Ornitz, D. M., Palmiter, R. D., Hammer, R. E., Brinster, R. L., Swift, G. H. & MacDonald, R. J. (1985). Specific expression of an elastase-human growth hormone fusion gene in pancreatic acinar cells in transgenic mice. Nature 313, 600603.Google Scholar
Orpin, C. G. (1984). The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls. Animal Science and Feed Technology 10, 121143.Google Scholar
Orpin, C. G., Jordan, D. J., Hazlewood, G. P. & Mann, S. P. (1986 a). Plasmid profiles of the rumen bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens. Journal of Applied Bacteriology 61, xiv.Google Scholar
Orpin, C. G., Jordan, D. J., Mathiesen, S. D., Veal, N. J., Hazlewood, G. P. & Mann, S. P. (1986 b). Genetic transformation of the rumen bacterium Selenomonas ruminantium. Journal of Applied Bacteriology 61, xiii–xiv.Google Scholar
Ørskov, E. R. & Fraser, C. (1975). The effects of processing of barley-based supplements on rumen pH, rate of digestion and voluntary intake of dried grass in sheep. British Journal of Nutrition 34, 493500.Google Scholar
Paice, M. G., Bourbonnais, R., Desrochers, M., Jurasek, L. & Yaguchi, M. (1986). Two forms of endoglucanases from basidiomycete Schizophyllum commune and their relationship to other β-1, 4-glycoside hydrolases. Archives of Microbiology 144, 201206.CrossRefGoogle Scholar
Penttila, M., André, L., Saloheimo, M., Lehtovaara, P. & Knowles, J. K. C. (1987). Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces Cerecisiae. Yeast 3, 175186.Google Scholar
Penttila, M., Lehtovaara, P. & Knowles, J. (1989). In Yeast Genetic Engineering, pp. 247267 [Barr, P. J., Brake, A. J. and Valenzuela, P., editors]. Stoneham, MA: Butterworth.Google Scholar
Penttila, M., Lehtovaara, P., Nevalainen, H., Bhikhabhai, R. & Knowles, J. (1986). Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase 1 gene. Gene 45, 253263.Google Scholar
Pettersson, D. & Aman, P. (1988). Effects of enzyme supplementation of dicts based on wheat. rye triticale on their productive value for broiler chickens. Animal Feed Science and Technology 20, 313324.Google Scholar
Pettersson, D. & Aman, P. (1989). Enzyme supplementation of a poultry diet containing rye and wheat. British Journal of Nutrition 62, 139149.Google Scholar
Poole, D. M., Hazlewood, G. P., Laurie, J. I. Barker, P. J. & Gilbert, H. J. (1990). Nucleotide sequence of the ruminococcus albus SY3 endoglucanase genes celA and celB. Molecular and General Genetics 223, 217223.Google Scholar
Reilly, P. J. (1981). Xylanases: structure and function. Basic Life Sciences 18, 111129.Google Scholar
Rixon, J. E., Hazlewood, G. P. & Gilbert, H. J. (1991). Integration of an unstable plasmid into the chromosome of Lactobacillus Plantarum. FEMS Microbiology Letters (In the Press).Google Scholar
Russell, J. B. & Dombrowski, D. B. (1980). Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Applied and Environmental Microbiology 39, 604610.Google Scholar
Russell, J. B. & Wilson, D. B. (1988). Potential opportunities and problems for genetically altered rumen microorganisms. Journal of Nutrition 118, 271279.Google Scholar
Saloheimo, M., Lehtovaara, P., Penttila, M., Teeri, T. T., Stahlberg, J., Johnsson, G., Pettersson, G., Claeyssens, M., Tomme, P. & Knowles, J. K. C. (1988). EGIII, a new endoglucanase from Trichoderma reesei: and the characterisation of both gene and enzyme. Gene 63, 1121.Google Scholar
Scheirlinck, T., Mahillon, J., Joos, H., Dhaese, P. & Michiels, F. (1989). Integration and expression of α-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Applied and Environmental Microbiology 55, 21302137.Google Scholar
Shoemaker, S., Schweickaert, V., Ladner, M., Gelfand, D., Kwok, S., Myambo, K. & Innis, M. (1983). Molecular cloning of exo-cellobiohydrolase I derived from Trichoderma reesei strain L27. Biol Technology 1, 691696.Google Scholar
Sreenath, H. K. & Joseph, R. (1982). Purification and properties of extracellular xylan hydrolases. Folia Microbiologica 27, 107115.Google Scholar
Stewart, C. S. (1977). Factors affecting the cellulolytic activity of rumen contents. Applied and Environmental Microbiology 33, 497502.Google Scholar
Swift, G. H., Hammer, R. E., MacDonald, R. J. & Brinster, R. L. (1984). Tissue-specific expression of the rat pancreatic elastase 1 gene in transgenic mice. Cell 38, 639646.Google Scholar
Takenishi, S. & Tsujisaka, Y. (1973). Purification and some properties of three xylanases from Penicillum janthinellum. Journal of Fermentation Technology 51, 458463.Google Scholar
Takenishi, S. & Tsujisaka, Y. (1975). On the modes of action of three xylanases produced by a strain of Aspergillus niger. Agricultural Biological Chemistry 39, 23152323.Google Scholar
Teather, R. M. (1982). Isolation of plasmid DNA from Butyrivibrio fibrisolvens. Applied and Environmental Microbiology 43, 298302.Google Scholar
Teather, R. M. (1985). Application of gene manipulation to rumen microflora. Canadian Journal of Animal Science 65, 563574.Google Scholar
Teeri, T. T., Lehtovaara, P., Kauppinen, S., Salovuori, L. & Knowles, J. (1987). Homologous domains in Trichoderma reesi cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 51, 4352.Google Scholar
Tomme, P., Van Tilbeurgh, H., Pettersson, G., Van Damme, J., Vandckerckhove, J., Knowles, J., Teeri, T. & Claeyssens, M. (1988). Studies of the cellulolytic system of Trichoderma reesei QM 9414. European Journal of Biochemistry 170, 575581.Google Scholar
Van der Meer, J. M. & Van Es, A. J. H. (1987). In Degradation of Lignocellulosic in Ruminants and in Industrial Processes, pp. 2134 [Van der Meer, J. M, Rijkens, B. A. and Ferranti, M. P., editors]. Amsterdam: Elsevier Applied Science.Google Scholar
Van Tilbeurgh, H., Tomme, P., Claeyssens, M., Bhikhabhai, R. & Pettersson, G. (1986). Limited proteolysis of the cellobiohydrolase 1 from Trichoderma reesei. FEBS Letters 204, 223227.Google Scholar
Van Vuuren, A. M. & Spoelstra, S. F. (1987). Enzyme silage additives. In Summary of Papers 8th Silage Conference, p. 109 [Thomas, C, editor]. Maidenhead: AFRC.Google Scholar
Walker, M. D., Edlund, T., Boulet, A. M. & Rutter, W. J. (1983). Cell-specific expression controlled by the 5'-flanking region of insulin and chymotrypsin genes. Nature 306, 557561.CrossRefGoogle ScholarPubMed
Warren, R. A. J., Gerhard, B., Gilkes, N. R., Owolabi, J. B., Kilburn, D. G. & Miller, R. C. (1987). A Bifunctional exoglucanase-endoglucanase fusion protein. Gene 61, 421427.Google Scholar
West, C. A. & Warner, P. J. (1985). Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacillus plantarum. Applied and Environmental Microbiology 50, 13191321.Google Scholar
Whistler, R. L. & Richards, E. L. (1970). In The Carbohydrates–Chemistry and Biochemistry, 2nd ed., vol. 2A, pp. 447469 [Pigman, W. and Horton, D, editors]. New York: Academic Press Inc.Google Scholar
Wong, K. K. Y., Tan, L. U. L. & Saddler, J. N. (1988). Multiplicity of β-1, 4-xylanases in microorganisms: functions and applications. Microbiological Reviews 52, 305317.Google Scholar
Wood, T. M. (1989). In Enzyme Systems for Lignocelulose Degradation, pp. 1735 [Coughlan, M. P., editor]. London and New York: Elsevier Applied Science.Google Scholar
Wood, T. M., McCrae, S. I., Wilson, C. A., Bhat, K. M. & Gow, L. A. (1988). In Biochemistry and Genetics of Cellulose Degradation, pp. 3152 [Aubert, J. -P., Béguin, P. and Millet, J., editors]. London: Academic Press.Google Scholar
Wu, J. H. D., Orme-Johnson, W. H. & Demain, A. L. (1988). Two components of an extracellular protein aggregate of Clostridium thermocellum together degrade crystalline cellulose. Biochemistry 27, 17031709.Google Scholar