Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-22T15:32:29.308Z Has data issue: false hasContentIssue false

Fuel selection, muscle fibre

Published online by Cambridge University Press:  28 February 2007

Eric Hultman
Affiliation:
Division of Clinical Chemistry, Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Karolinska Institute, S-141 86 Huddinge, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1995

References

Armstrong, R. B. (1988). Muscle fibre recruitment patterns and their metabolic correlates. In Exercise, Nutrition and Energy Metabolism, pp. 926 [Horton, E. S. and Terjung, R. L., editors]. New York: Macmillan Publishing Company.Google Scholar
Ball-Burnett, M., Gren, H. J. & Houston, M. E. (1990). Energy metabolism in human slow and fast twitch fibres during prolonged cycle exercise. Journal of Physiology 437, 257267.CrossRefGoogle Scholar
Behal, R. H., Buxton, D. B., Robertson, J. G. & Olson, M. S. (1993). Regulation of the pyruvate dehydrogenase multienzyme complex. Annual Review of Nutrition 13, 497520.CrossRefGoogle ScholarPubMed
Bergström, J. (1962). Muscle electrolytes in man. Determined by neutron activation analysis on needle biopsy specimens. A study on normal subjects, kidney patients, and patients with chronic diarrhoea. Scandinavian Journal of Clinical and Laboratory Investigation 14, Suppl., 68.Google Scholar
Bergström, J., Harris, R. C., Hultman, E. & Nordesjö, L.-O. (editors) (1971). Energy rich phosphogens a dynamic and static work. Advances in Experimental Medicine and Biology, vol. II, Muscle Metabolism During Exercise, pp. 341355. New York: Plenum Press.Google Scholar
Blomstrand, E., Ekblom, B. & Newsholme, E. A. (1986). Maximum activities of key glycolytic and oxidative enzymes in human muscle from differently trained individuals. Journal of Physiology 381, 111118.CrossRefGoogle ScholarPubMed
Boobis, L. H., Williams, C. & Wootton, S. A. (1983). Human muscle metabolism during brief maximal exercise. Journal of Physiology 338, 21P22P.Google Scholar
Boyd, A. E., Giamber, S. R., Mager, M. & Lebovietz, H. E. (1974). Lactate inhibition of lipolysis in exercising man. Metabolism 23, 531542.CrossRefGoogle ScholarPubMed
Burke, R. E. & Edgerton, V. R. (1975). Motor unit properties and selective involvement in measurements. Exercise and Sport Sciences Reviews 3, 3181.CrossRefGoogle Scholar
Chasiotis, D. (1983). The regulation of glycogen phosphorylase and glycogen breakdown in human skeletal muscle. Acta Physiologica Scandinavica, Suppl. 518 68.Google ScholarPubMed
Christensen, E. H. & Hansen, O. (1939). Arbeitsfähigkeit und Ernährung (Ability to work and nutrition). Scandinavian Archives of Physiology 81, 160171.CrossRefGoogle Scholar
Constantin-Teodosiu, D., Carlin, J. I., Cederblad, G., Harris, R. C. & Hultman, E. (1991). Acetyl group accumulation and pyruvate dehydrogenase activity in human muscle during incremental exercise. Acta Physiologica Scandinavica 143, 367372.CrossRefGoogle ScholarPubMed
Constantin-Teodosiu, D., Cederblad, G. & Hultman, E. (1992). PDC activity and acetyl group accumulation in skeletal muscle during prolonged exercise. Journal of Physiology 73, 24032407.Google ScholarPubMed
Davies, C. T. M. & Thompson, M. V. (1979). Aerobic performance of female marathon and male ultramarathon athletes. European Journal of Applied Physiology 41, 233245.CrossRefGoogle ScholarPubMed
Dyck, D. J., Putman, C. T., Heigenhauser, G. J. F., Hultman, E. & Spriet, L. L. (1993). Regulation of fat–carbohydrate interaction in skeletal muscle during intense aerobic cycling. American Journal of Physiology 265, 852859.Google ScholarPubMed
Essén, B. (1978). Glycogen depletion of different fibre types in human skeletal muscle during intermittent and continuous exercise. Acta Physiologica Scandinavica 554, Suppl., 3648.Google Scholar
Fredholm, B. B. (1969). Inhibition of fatty acid release from adipose tissue by high arterial blood concentrations of lactate. Acta Physiologica Scandinavica 77, Suppl., 330.Google Scholar
Fridén, J., Seger, J. & Ekblom, B. (1989). Topographical localization of muscle glycogen: an ultrahistochemical study in the human vastus lateralis. Acta Physiologica Scandinavica 135, 381391.CrossRefGoogle ScholarPubMed
Galbo, H., Christensen, N. J. & Host, J. J. (1977). Catecholamines and pancreatic hormones during autonomic blockade in exercising man. Acta Physiologica Scandinavica 101, 428.CrossRefGoogle ScholarPubMed
Garland, P. B., Newsholme, E. A. & Randle, P. J. (1964). Effects of fatty acids and ketone bodies and of alloxan diabetes and starvation on pyruvate metabolism. Biochemical Journal 93, 665678.CrossRefGoogle ScholarPubMed
Garland, P. B. & Randle, P. J. (1964). Control of pyruvate dehydrogenase in the perfused rat heart by the intracellular concentration of acetyl CoA. Biochemical Journal 91, 6C7C.Google Scholar
Garland, P. B., Randle, P. J. & Newsholme, E. A. (1963). Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes and starvation. Nature 200, 169170.CrossRefGoogle ScholarPubMed
Gollnick, P. D., Armstrong, R. B., Saubert, C. W. IV, Sembrowich, W. L., Shepherd, R. E. & Saltin, B. (1973). Glycogen depletion patterns in human skeletal muscle fibres during prolonged work. Pflügers Archiv 344, 12.CrossRefGoogle ScholarPubMed
Gollnick, P. D. & Saltin, B. (1988). Fuel for muscular exercise: role of fat. In Exercise, Nutrition and Energy Metabolism, pp. 7288 [Horton, E. S. and Terjung, R. L., editors]. New York: Macmillan Publishing Company.Google Scholar
Greenhaff, P. L., Söderlund, K., Ren, J.-M. & Hultman, E. (1992). Energy metabolism in single human muscle fibres during intermittent contraction with occluded circulation. Journal of Physiology 460, 443453.CrossRefGoogle Scholar
Greenhaff, P. P., Ren, J.-M., Söderlund, K. & Hultman, E. (1991). Energy metabolism in single human muscle fibers during contraction without and with epinephrine infusion. American Journal of Physiology 260, E713E718.Google ScholarPubMed
Hagenfeldt, L. & Wahren, J. (1971). Metabolism of free fatty acids and ketone bodies in skeletal muscle. In Muscle Metabolism During Exercise, pp. 153163 [Pernow, B. and Saltin, B., editors]. New York: Plenum Press.CrossRefGoogle ScholarPubMed
Harris, R. C., Essén, B. & Hultman, E. (1976). Glycogen phosphorylase activity in biopsy samples and single muscle fibres of musculus quadriceps femoris of man at rest. Scandinavian Journal of Clinical and Laboratory Investigation 36, 521526.CrossRefGoogle ScholarPubMed
Havel, R. J. & Goldfein, A. (1959). The role of the sympathetic nervous system in the metabolism of free fatty acids. Journal of Lipid Research 1, 102108.CrossRefGoogle Scholar
Henriksson, J. (1995). Muscle fuel selection: effect of exercise and training. Proceedings of the Nutrition Society 54, 125138.CrossRefGoogle ScholarPubMed
Hultman, E., Greenhaff, P. L., Ren, J.-M. & Söderlund, K. (1991). Energy metabolism and fatigue during intense muscle contraction. Biochemical Society Transactions 19, 347353.CrossRefGoogle ScholarPubMed
Issad, T., Penicaud, L., Ferré, P., Kandé, J., Baudon, M.-A. & Girard, J. (1987). Effects of fasting on tissue glucose utilisation in conscious resting rats. Major glucose-sparing effect in working muscles. Biochemical Journal 246, 241244.CrossRefGoogle ScholarPubMed
Issekutz, B. Jr, Shaw, W. A. & Issekutz, T. B. (1975). Effect of lactate on the FFA and glycerol turnover in resting and exercising dogs. Journal of Applied Physiology 39, 349353.CrossRefGoogle ScholarPubMed
Jones, N. L., McCartney, N., Graham, T., Spriet, L. L., Kowalchuk, J. M., Heigenhauser, G. J. F. & Sutton, J. R. (1985). Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. Journal of Applied Physiology 59, 132136.CrossRefGoogle ScholarPubMed
Jorfeldt, L. & Wahren, J. (1971). Leg blood flow during exercise in man. Clinical Science 41, 459473.CrossRefGoogle ScholarPubMed
Linnarsson, D. (1974). Dynamics of preliminary gas exchange and heart rate changes at start and end of exercise. Acta Physiologica Scandinavica 415, Suppl., 568.Google Scholar
Lowry, O. H., Schulz, D. W. & Passonneau, J. V. (1964). Effects of adenylic acid on the kinetics of muscle phosphorylase a. Journal of Biological Chemistry 239, 19471953.CrossRefGoogle ScholarPubMed
Monster, A. W. & Chan, H. (1977). Isometric force production by motor units of extensor digitorum communis muscle in man. Journal of Neurophysiology 40, 14321443.CrossRefGoogle ScholarPubMed
Newsholme, E. A. & Leech, A. R. (1988). The integration of metabolism during starvation, refeeding, and injury. Biochemistry for the Medical Sciences, pp. 330331. Toronto: Wiley.Google Scholar
Pette, D. & Staron, R. S. (1990). Cellular and molecular diversities of mammalian skeletal muscle fibers. Reviews of Physiology, Biochemistry and Pharmacology 116, 176.Google ScholarPubMed
Putman, C. T., Spriet, L. L., Hultman, E., Lindinger, M. I., Lands, L. C., McKelvie, R. S., Cederblad, G., Jones, N. L. & Heigenhauser, G. J. F. (1993). Pyruvate dehydrogenase activity and acetyl group accumulation during exercise after different diets. American Journal of Physiology 265, E752E760.Google ScholarPubMed
Randle, P. J. (1986). Fuel selection in animals. Biochemical Society Transactions 14, 799806.CrossRefGoogle ScholarPubMed
Ren, J.-M. & Hultman, E. (1990). Regulation of phosphorylase a activity in human skeletal muscle. Journal of Applied Physiology 69, 919923.CrossRefGoogle ScholarPubMed
Rennie, M. J., Winder, W. W. & Holloszy, J. O. (1976). A sparing effect of increased plasma fatty acid on muscle and liver glycogen content in exercising rat. Biochemical Journal 156, 647655.CrossRefGoogle ScholarPubMed
Roche, T. E. & Patel, M. S. (1989). α-Keto acid dehydrogenase complexes: organization, regulation and biomedical ramifications. Annals of the New York Academy of Sciences 573, 1473.Google Scholar
Sahlin, K. (1986). Metabolic changes limiting muscle performance. In International Series on Sport Sciences, vol. 16, Biochemistry of Exercise VI, pp. 323342 [Saltin, B., editor]. Champaign, Ill.: Human Kinetics Publishers.Google Scholar
Söderlund, K., Greenhaff, P. L. & Hultman, E. (1992). Energy metabolism in type I and type II human muscle fibres during short term electrical stimulation at different frequencies. Acta Physiologica Scandinavica 144, 1522.CrossRefGoogle ScholarPubMed
Sugden, M. C. & Holness, M. J. (1989). Effects of re-feeding after prolonged starvation on pyruvate dehydrogenase activities in heart, diaphragm and selected skeletal muscles of the rat. Biochemical Journal 262, 669672.CrossRefGoogle ScholarPubMed
Thomson, J. A., Green, H. J. & Houston, M. E. (1979). Muscle glycogen depletion patterns in fast twitch fibre subgroups of man during submaximal and supramaximal exercise. Pflügers Archiv 379, 105108.CrossRefGoogle ScholarPubMed
Völlestad, N. K. & Blom, P. C. S. (1985). Effect of varying exercise intensity on glycogen depletion in human muscle fibres. Acta Physiologica Scandinavica 125, 395405.CrossRefGoogle ScholarPubMed
Wieland, O. H. (1983). The mammalian pyruvate dehydrogenase complex: structure and regulation. Reviews of Physiology, Biochemistry and Pharmacology 96, 123170.CrossRefGoogle ScholarPubMed