Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-22T09:52:41.989Z Has data issue: false hasContentIssue false

Fuel selection at the level of mitochondria in mammalian tissues

Published online by Cambridge University Press:  28 February 2007

Richard M. Denton
Affiliation:
Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD
James G. McCormack
Affiliation:
Department of Pharmacology, Syntex Research Centre, Heriot- Watt University Research Park, Riccarton, Edinburgh EH14 4AP
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1995

References

Allen, S. P., Stone, D. & McCormack, J. G. (1992). The loading of Fura-2 into mitochondria in the intact perfused rat heart and its use to estimate matrix Ca2+ under various conditions. Journal of Molecular Cardiology 24, 765773.CrossRefGoogle ScholarPubMed
Behel, R. H., Buxton, D. B., Robertson, J. G. & Olson, M. S. (1993). Regulation of the pyruvate dehydrogenase multienzyme complex. Annual Review of Nutrition 13, 497520.CrossRefGoogle Scholar
Brady, P. S., Ramsay, R. R. & Brady, L. J. (1993). Regulation of the long-chain carnitine acyltransferases. FASEB Journal 7, 10391044.CrossRefGoogle ScholarPubMed
Cohen, P. (1993). Dissection of the protein phosphorylation cascades involved in insulin and growth factor action. Biochemical Society Transactions 21, 533567.CrossRefGoogle ScholarPubMed
Denton, R. M. & Halestrap, A. P. (1979). Regulation of pyruvate metabolism in mammalian tissues. Essays in Biochemistry 15, 3777.Google ScholarPubMed
Denton, R. M. & McCormack, J. G. (1985). Ca2+-transport by mammalian mitochondria and its role in hormone action. American Journal of Physiology 249, E543E554.Google ScholarPubMed
Denton, R. M. & McCormack, J. G. (1990). Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annual Review of Physiology 52, 451466.CrossRefGoogle ScholarPubMed
Denton, R. M., McCormack, J. G. & Marshall, S. E. (1984). Persistence of the effect of insulin on pyruvate dehydrogenase activity in rat white and brown adipose tissue during the preparation and subsequent incubation of mitochondria. Biochemical Journal 217, 441452.CrossRefGoogle Scholar
Denton, R. M., Midgley, P. J. W., Rutter, G. A., Thomas, A. P. & McCormack, J. G. (1989). Studies into the mechanism whereby insulin activates pyruvate dehydrogenase complex in adipose tissue. Annals of the New York Academy of Sciences 573, 285296.CrossRefGoogle ScholarPubMed
Denton, R. M., Randle, P. J. & Martin, B. R. (1972). Stimulation by calcium ions of pyruvate dehydrogenase phosphatase. Biochemical Journal 128, 161163.CrossRefGoogle Scholar
Denton, R. M., Richards, D. A. & Chin, J. G. (1978). Calcium ions and the regulation of NAD+-linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochemical Journal 176, 899906.CrossRefGoogle ScholarPubMed
Esser, V., Britton, C. H., Weis, B. C., Foster, D. W. & McGarry, J. D. (1993). Cloning, sequencing and expression of a cDNA encoding rat liver mitochondrial carnitine palmitoyltransferase 1. Journal of Biological Chemistry 288, 58175822.CrossRefGoogle Scholar
Gabriel, J. L., Zervos, P. R. & Plaut, G. W. E. (1986). Activity of purified NAD-specific isocitrate dehydrogenase at modulator and substrate concentrations approximating conditions in mitochondria. Metabolism 35, 661667.CrossRefGoogle ScholarPubMed
Halestrap, A. P. (1989). The regulation of the mitochondrial matrix volume in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochimica et Biophysica Acta 973, 355382.CrossRefGoogle ScholarPubMed
Harris, D. A. & Das, A. M. (1991). Control of mitochondrial ATP synthesis in the heart. Biochemical Journal 280, 501573.CrossRefGoogle ScholarPubMed
Kolodzief, M. P. & Zammit, V. A. (1990). Re-evaluation of the interaction of malonyl-CoA with the rat liver mitochondrial carnitine palmityltransferase system by using purified outer membranes. Biochemical Journal 267, 8590.CrossRefGoogle Scholar
Lawson, J. E., Niu, X. D., Browning, K. S., Trong, H. L., Yan, J. G. & Reed, L. J. (1993). Molecular cloning and expression of the catalytic subunit of bovine pyruvate dehydrogenase phosphatase and sequence similarity to protein phosphatase 2C. Biochemistry 32, 89878993.CrossRefGoogle ScholarPubMed
McCormack, J. G. & Denton, R. M. (1979). The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochemical Journal 180, 533544.CrossRefGoogle ScholarPubMed
McCormack, J. G. & Denton, R. M. (1984). Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+. Biochemical Journal 218, 235247.CrossRefGoogle ScholarPubMed
McCormack, J. G. & Denton, R. M. (1994). Signal transduction by intramitochondrial Ca2+ in mammalian energy metabolism. News in Physiological Science 9, 7176.Google Scholar
McCormack, J. G. & England, P. J. (1983). Ruthenium red inhibits the activation of pyruvate dehydrogenase caused by positive isotropic agents in the perfused rat heart. Biochemical Journal 214, 581585.CrossRefGoogle Scholar
McCormack, J. G., Halestrap, A. P. & Denton, R. M. (1990). The role of calcium ions in the regulation of mammalian intramitochondrial metabolism. Physiological Reviews 70, 391425.CrossRefGoogle ScholarPubMed
McGarry, J. D. & Foster, D. W. (1980). Regulation of hepatic fatty acid oxidation and ketone body production. Annual Review of Biochemistry 49, 395420.CrossRefGoogle ScholarPubMed
Miyata, H., Silverman, H. S., Sollott, S. J., Lakatta, E. G., Stern, M. D. & Hansford, R. G. (1991). Measurement of mitochondrial free Ca2+ concentration in living single rat cardiac myocytes. American Journal of Physiology 261, H1123H1134.Google ScholarPubMed
Myers, M. G., Sun, X. J. & White, J. F. (1994). The IRS-1 signaling system. Trends in Biochemical Sciences 19, 269307.CrossRefGoogle ScholarPubMed
Popov, K. M., Kedishvili, N. Y., Zhao, Y., Shimomura, Y., Grabb, D. W. & Harris, R. A. (1993). Primary structure of pyruvate dehydrogenase kinase establishes a new family of eukaryotic protein kinases. Journal of Biological Chemistry 268, 2660226606.CrossRefGoogle ScholarPubMed
Popov, K. M., Zhao, Y., Shimomura, Y., Kuntz, M. J. & Harris, R. A. (1992). Branched-chain alpha-keto acid dehydrogenase kinase in molecular cloning, expression and sequence similarity with histidine protein kinases. Journal of Biological Chemistry 267, 1312713130.CrossRefGoogle ScholarPubMed
Radda, G. K., Kemp, G. J., Syles, P. & Taylor, D. J. (1993). Control of oxidative phosphorylation in muscle. Biochemical Society Transactions 21, 762764.CrossRefGoogle ScholarPubMed
Randle, P. J. (1986). Fuel selection in animals. Biochemical Society Transactions 14, 799806.CrossRefGoogle ScholarPubMed
Randle, P. J. (1995). Metabolic fuel selection: general integration at the whole-body level. Proceedings of the Nutrition Society 54, 317327.CrossRefGoogle ScholarPubMed
Randle, P. J., Patston, P. A. & Espinal, J. (1987). Branched-chain ketoacid dehydrogenase. The Enzymes 18B, 97122.CrossRefGoogle Scholar
Rizzuto, R., Simpson, A. W. M., Brini, M. & Pozzan, T. (1992). Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358, 325327.CrossRefGoogle ScholarPubMed
Rutter, G. A. (1990). Ca2+-binding to citrate cycle dehydrogenases. International Journal of Biochemistry 22, 10811088.CrossRefGoogle ScholarPubMed
Rutter, G. A. & Denton, R. M. (1988). Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochemical Journal 252, 181189.CrossRefGoogle ScholarPubMed
Schulz, H. (1991). Beta oxidation of fatty acids. Biochimica et Biophysica Acta 1081, 109120.CrossRefGoogle ScholarPubMed
Thomas, A. P. & Denton, R. M. (1986). Use of toluene-permeabilised mitochondria to study the regulation of pyruvate dehydrogenase in situ. Further evidence that insulin acts through stimulation of pyruvate dehydrogenase phosphatase. Biochemical Journal 238, 93101.CrossRefGoogle Scholar
Thomas, A. P., Diggle, T. A. & Denton, R. M. (1986). Sensitivity of pyruvate dehydrogenase phosphate phosphatase to magnesium ions. Similar effects of spermine and insulin. Biochemical Journal 238, 8391.CrossRefGoogle ScholarPubMed
Unitt, J. F., McCormack, J. G., Reid, D., MacLachlan, L. K. & England, P. J. (1989). Direct evidence for the role of intramitochondrial Ca2+ in the regulation of oxidative phosphorylation in the stimulated rat heart - studies using P-31 NMR and ruthenium red. Biochemical Journal 262, 293301.CrossRefGoogle Scholar
Yeaman, S. J. (1989). The 2-oxo acid dehydrogenase complexes: recent advances. Biochemical Journal 257, 625632.CrossRefGoogle ScholarPubMed