Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T07:43:16.313Z Has data issue: false hasContentIssue false

Factors influencing the daily energy expenditure of small mammals

Published online by Cambridge University Press:  28 February 2007

John Speakman
Affiliation:
Department of Zoology, University of Aberdeen, Aberdeen AB24 2TZ
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Nutrition of wild and captive wild animals’ Plenary Lecture
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Baker, C. E. & Dunaway, P. B. (1975). Elimination of 137Cs and 59Fe and its relationship to metabolic rates of wild small rodents. Journal of Experimental Zoology 192, 223236.CrossRefGoogle ScholarPubMed
Baker, C. E., Dunaway, P. B. & Auerbach, S. I. (1968). Measurement of Metabolism in Cotton Rats by Retention of Cesium-134. Oak Ridge National Laboratory Publication no. ORNL-TM-2069.Google Scholar
Bakken, G. S. (1976). A heat-transfer analysis of animals: unifying concepts and the application of metabolism chamber data to field ecology. Journal of Theoretical Biology 60, 337–384.CrossRefGoogle ScholarPubMed
Barclay, R. M. R., Dolan, M. & Dyck, A. (1991). The digestive efficiency of insectivorous bats. Canadian Journal of Zoology 69, 18531856.CrossRefGoogle Scholar
Bell, G. P., Bartholomew, G. A. & Nagy, K. A. (1986). The roles of energetics, water economy, foraging behaviour and geothermal refugia in the distribution of the bat Macrotus-californicus. Journal of Comparative Physiology 156B, 441450.CrossRefGoogle Scholar
Berteaux, D., Masseboeuf, F., Bonzom, J.-M., Bergeron, J.-M., Thomas, D. W. & Lapieme, H. (1996 a). Effect of carrying a radiocollar on expenditure of energy by meadow voles. Journal of Mammalogy 77, 359363.CrossRefGoogle Scholar
Berteaux, D., Thomas, D. W., Bergeron, J.-M. & Lapierre, H. (1996 b). Repeatability of daily field metabolic rate in female meadow voles (Microtus pennsylvanicus). Functional Ecology 10, 751759.CrossRefGoogle Scholar
Brody, S. (1945). Bioenergetics and Growth. New York: Hafner.Google Scholar
Bryant, D. M. (1997). Energy expenditure in wild birds. Proceedings of the Nutrition Society 56, 10251039.CrossRefGoogle ScholarPubMed
Bryant, D. M. & Tatner, P. (1991). Intraspecies variation in avian energy expenditure: correlates and constraints. Ibis 133, 236246.CrossRefGoogle Scholar
Buttemer, W. A., Hayworth, A. M., Weathers, W. W. & Nagy, K. A. (1986). Time-budget estimates of avian energy-expenditure – Physiological and meteorological considerations. Physiological Zoology 59, 131149.CrossRefGoogle Scholar
Chevalier, C. D. (1989). Field energetics and water balance of desert dwelling ringtail cats Bassariscus astutus (Carnivora: Procyonidae). American Zoology 29, 8A.Google Scholar
Chew, R. M. (1971). The excretion of 65Zn and 54Mn as indices of energy metabolism of Peromyscus polionotus. Journal of Mammalogy 52, 337350.CrossRefGoogle ScholarPubMed
Christian, K. A., Baudinette, R. V. & Pamula, Y. (1997). Energetic costs of activity by lizards in the field. Functional Ecology 11, 392398.CrossRefGoogle Scholar
Covell, D. F., Miller, D. S. & Karasov, W. H. (1996). Cost of locomotion and daily energy expenditure by free-living swift foxes (Vulpes velox): a seasonal comparison. Canadian Journal of Zoology 74, 283290.CrossRefGoogle Scholar
Corp, N., Gorman, M. L. & Speakman, M. R. (1997). Apparent absorption efficiencies and gut morphometry of wood mice (Apodemus sylvaticus) from two distinct populations with different diets. Physiological Zoology 70 (In the Press).CrossRefGoogle ScholarPubMed
Crissey, S. D., Pribyl, L. S., Rice, D. F. & Rice, A. L. (1997). Utilizing wild foraging ecology information to provide captive primates with an appropriate diet. Proceedings of the Nutrition Society 56, 10831094.CrossRefGoogle ScholarPubMed
Daan, S., Masman, D., Strijkstra, A. M. & Kenagy, G. J. (1990). Daily energy turnover during reproduction in birds and mammals: its relationship to basal metabolic rate. Acta XX Congressus Internationalis Ornithologica IV, 19761987.Google Scholar
Daan, S., Masman, D., Strijkstra, A. & Verhulst, S. (1989). Intraspecific allometry of basal metabolic rate: Relations with body size, temperature, composition and circadian phase in the Kestrel (Falco tinnunculus). Journal of Biological Rhythms 4, 267283.CrossRefGoogle ScholarPubMed
Degen, A. A. (1993). Energy requirements of the fat sand rat (Psammomys obesus) when consuming the saltbush, Atriplex halimus: A review. Journal of Basic and Clinical Physiology and Pharmacology 4, 1328.CrossRefGoogle ScholarPubMed
Degen, A. A., Hazan, A., Kam, M., & Nagy, K. A. (1991). Seasonal water influx and energy expenditure of free-living fat sand rats. Journal of Mammalogy 72, 652657.CrossRefGoogle Scholar
Degen, A. A., Kam, M., Hazan, A. & Nagy, K. A. (1986). Energy expenditure and water flux in three sympatric desert rodents. Journal of Animal Ecology 55, 421429.CrossRefGoogle Scholar
Degen, A. A., Pinshow, B. & Kam, M. (1992). Field metabolic rates and water influxes of two sympatric Gerbillidae Gerbillus allenbyi and Gerbillus pyramidium. Oecologia 90, 586590.CrossRefGoogle Scholar
Drent, R. & Daan, S. (1980). The prudent parent: energetics adjustments in avian breeding. Ardea 68, 225252.Google Scholar
Drozdz, A. (1968). Digestibility and assimilation of natural foods in small rodents. Acta Theriologica 13, 367– 389.CrossRefGoogle Scholar
Foley, W. J. (1987). Digestion and energy metabolism in a small arboreal marsupial, the greater glider (Petauroides volans), fed high-terpene Eucalyptus foliage. Journal of Comparative Physiology 157B, 355362.CrossRefGoogle Scholar
Foley, W. J., Kehl, J. C., Nagy, K. A., Kaplan, I. R. & Borsboom, A. C. (1990). Energy and water metabolism in free-living greater gliders. Ausrralian Journal of Zoology 38, 19.CrossRefGoogle Scholar
Garland, T. (1983). Scaling the ecological cost of transport to body mass in terrestrial mammals. American Naturalist 121, 571587.CrossRefGoogle Scholar
Geffen, E., Degen, A. A., Kam, M., Reuven, H. & Nagy, K. A. (1992). Daily energy expenditure and water flux of free-living Blanford's foxes (Vulpes cana), a small desert carnivore. Journal of Animal Ecology 61, 611617.CrossRefGoogle Scholar
Gettinger, R. D. (1984). Energy and water metabolism of free-ranging pocket gophers Thomomys bottae. Ecology 65, 740&751.CrossRefGoogle Scholar
Glazier, D. S. (1985). Energetics of litter size in five species of Peromyscus with generalisations for other mammals. Journal of Mammalogy 66, 629643.CrossRefGoogle Scholar
Goldstein, D. L. (1988). Estimates of daily energy expenditure in birds: The time-energy budget as an integrator of laboratory and field studies. American Zoology 28, 829844.CrossRefGoogle Scholar
Green, B. (1989). Water and energy turnover in free-living Macropodids. In Kangaroos, Wallabies and Rat-kangaroos, pp. 223229 [Grogg, G., Jarman, P. and Hume, I., editors]. New South Wales: Surry-Beatty and Sons.Google Scholar
Green, B. & Dunsmore, J. D. (1978). Turnover of tritiated water and 22sodium in captive rabbits (Oryctolagus cuniculus). Journal of Mammalogy 59, 1217.CrossRefGoogle ScholarPubMed
Green, B., King, D. & Bradley, A. (1989). Water and energy metabolism and estimated food consumption rates of free-living wambengers Phascogale calura (Marsupialia: Dasyuridae). Australian Wildlife Research 16, 501508.CrossRefGoogle Scholar
Green, B., Newgrain, K., Catlin, P. & Turner, G. (1991). Patterns of prey consumption and energy use in a small carnivorous marsupial Antechinus stuartii. Australian Journal of Zoology 39, 539548.CrossRefGoogle Scholar
Green, B.& Rowe-Rowe, D. T. (1987). Water and energy metabolism in free-living multi-mammate mice (Praeomys natalensis) during summer. South African Journal of Science 22, 1417.Google Scholar
Grenot, C., Pascal, M., Buscarlet, L., Francaz, J. M. & Sellami, M. (1984). Water and energy balance in the water vole (Arvicola terrestris Sherman) in the laboratory and the field (Haut-Doubs, France). Comparative Biochemistry and Physiology 78A, 185196.CrossRefGoogle Scholar
Haim, A. & Izhaki, A. (1993). The ecological significance of resting metabolic rate and non-shivering thermogenesis in rodents. Journal of Thermal Biology 18, 7181.CrossRefGoogle Scholar
Hammond, K. A. & Diamond, J. (1992). An experimental test for a ceiling on sustained metabolic rate in lactating mice. Physiological Zoology 65, 952977.CrossRefGoogle Scholar
Hammond, K. A. & Diamond, J. (1997). Maximal sustained energy budgets in humans and animals. Nature 386, 457462.CrossRefGoogle ScholarPubMed
Hammond, K. A. & Konarzewski, M. (1996). The trade-off between maintenance and activity. In daptations to Cold. International Hibernation Symposium, pp. 153158 [Geiser, F., Hulbert, A. and Nicol, S. C., editors]. Annidale, Australia: University of New England Press.Google Scholar
Hammond, K. A., Konarzewski, M., Torres, R. & Diamond, J. (1994). Metabolic ceilings under a combination of peak energy demands. Physiological Zoology 68, 14791506.CrossRefGoogle Scholar
Hammond, K. A. & Wunder, B. A. (1991). The role of diet quality and energy need in the nutritional ecology of a small herbivore, Microtus ochrogaster. Physiological Zoology 64, 541567.CrossRefGoogle Scholar
Hanski, I. (1985). What does a shrew do in an energy crisis? In Behavioural Ecology: Symposium of the British Ecological Society, pp. 247252 [Smith, R. H. and Sibley, R. M., editors]. Oxford: Blackwell.Google Scholar
Hart, J. S. (1953). The relation between thermal history and cold resistance in certain species of rodents. Canadian Journal of Zoology 31, 8097.CrossRefGoogle Scholar
Hart, J. S. & Heroux, O. (1953). A comparison of some seasonal temperature induced changes in Peromyscus: cold resistance, metabolism and pelage insulation. Canadian Journal of Zoology 31, 528534.CrossRefGoogle Scholar
Hayes, J. P. (1989 a). Altitudinal and seasonal effects on aerobic metabolism of deer mice. Journal of Comparative Physiology 159, 453459.CrossRefGoogle ScholarPubMed
Hayes, J. P. (1989 b). Field and maximal metabolic rates of deer mice (Peromyscus maniculatus) at low and high altitudes. Physiological Zoology 62, 732744.CrossRefGoogle Scholar
Hawkins, A. E. & Jewell, P. A. (1962). Food consumption and energy requirements of captive British shrews and the mole. Proceedings of the Zoological Society of London 138, 137155.CrossRefGoogle Scholar
Henneman, W. W. (1983). Relation between body mass, metabolic rate and intrinsic rate of natural increase in mammals. Oecologia 56, 104108.CrossRefGoogle Scholar
Holleman, D. F., White, R. G. & Feist, D. D. (1982). Seasonal energy and water metabolism in free-living Alaskan voles. Journal of Mammalogy 63, 293296.CrossRefGoogle Scholar
Horvath, S. M., Folk, G. E., Craig, F. N.& Fleischmann, W. (1948). Survival time of various warm blooded animals in extreme cold. Science 107, 171172.CrossRefGoogle ScholarPubMed
Hulbert, A. J. & Dawson, T. J. (1974). Standard metabolism and body temperature of parameloid marsupials from different environments. Comparative Biochemistry and Physiology 47A, 583590.CrossRefGoogle ScholarPubMed
Kaczmarski, F. (1966). Bioenergetics of pregnancy and lactation in the bank vole. Acta Theriologica 11, 409417.CrossRefGoogle Scholar
Karasov, W. H. (1981). Daily energy expenditure and cost of activity in a free-living mammal. Oecologia 51, 253259.CrossRefGoogle Scholar
Karasov, W. H. (1983). Wintertime energy conservation by huddling in Antelope ground squirrels (Ammospermophilus leucurus). Journal of Mammalogy 64, 341345.CrossRefGoogle Scholar
Kenagy, G. J., Masman, D., Sharbaugh, S. M. & Nagy, K. A. (1990). Energy expenditure during lactation in relation to litter size in free-living golden-mantelled ground squirrels. Journal of Animal Ecology 59, 7388.CrossRefGoogle Scholar
Kenagy, G. J., Sharbaugh, S. M. & Nagy, K. A. (1989). Annual cycle of energy and time expenditure in a golden mantelled ground squirrel population. Oecologia 78, 269282.CrossRefGoogle Scholar
Kinnear, A. & Sheild, J. W. (1975). Metabolism and temperature regulation in marsupials. Comparative Biochemistry and Physiology 52A, 235245.CrossRefGoogle ScholarPubMed
Kleiber, M. (1932). Body size and metabolism. Hilgardia 6, 315353.CrossRefGoogle Scholar
Kleiber, M. (1961). The Fire of Life: An Introduction to Animal Energetics. New York: Wiley.Google Scholar
Koteja, P. (1991). On the relation between basal and field metabolic rates in birds and mammals. Functional Ecology 5, 5664.CrossRefGoogle Scholar
Koteja, P. (1996). Limits to the energy budget in a rodent, Peromyscus maniculatus: the central limitation hypothesis. Physiological Zoology 69, 981993.CrossRefGoogle Scholar
Konarzewski, M. & Diamond, J. (1995). Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution 49, 12391248.CrossRefGoogle ScholarPubMed
Krebs, H. A. (1950). Body size and tissue respiration. Biochimica et Biophysica Acta 4, 249269.CrossRefGoogle ScholarPubMed
Kurta, A., Bell, G. P., Nagy, K. A. & Kunz, T. H. (1989). Energetics of pregnancy and lactation in free-ranging little brown bats, Myotis lucifugus. Physiological Zoology 62, 804818.CrossRefGoogle Scholar
Kurta, A., Kunz, T. H. & Nagy, K. A. (1990). Energetics and water flux of free-ranging big brown bats (Eptesicusfiscus) during pregnancy and lactation. Journal of Mammalogy 71, 5965.CrossRefGoogle Scholar
Lifson, N., Gordon, G. B. & McClintock, R. (1955). Measurement of total carbon dioxide production by means of D218O. Journal of Applied Physiology 7 704710.CrossRefGoogle Scholar
Lifson, N. & McClintock, R. (1966). Theory of use of the turnover rates of body water for measuring energy and material balance. Journal of Theoretical Biology 12, 4674.CrossRefGoogle ScholarPubMed
Loudon, A. S. I. & Racey, P. A. (editors) (1987). In Reproductive Energetics of Mammals. Symposium of the Zoological Society of London, vol. 57. Oxford: Oxford University Press.Google Scholar
McDevitt, R. M. & Speakman, J. R. (1994). Central limits to sustained metabolic rate have no role in cold acclimation of the short-tailed field vole (Microtus agrestis). Physiological Zoology 67, 11171139.CrossRefGoogle Scholar
McLean, J. A. & Speakman, J. R. (1995). Elimination rate of Zn65 as a measure of food intake – a validation study in the mouse (Mus sp). Journal of Applied Physiology 79, 13611369.CrossRefGoogle Scholar
McNab, B. K. (1980). Food habits, energetics and the population biology of mammals. American Naturalist 116, 106124.CrossRefGoogle Scholar
McNab, B. K. (1986). The influence of food habits on the energetics of eutherian mammals. Ecological Monographs 56, 119.CrossRefGoogle Scholar
Migula, P. (1969). Bioenergetics of pregnancy and lactation in European Common vole. Acta Theriologica 14, 167179.CrossRefGoogle Scholar
Mullen, R. K. (1970). Respiratory metabolism and body water turnover rates of Perognathus formosus in its natural environment. Comparative Biochemistry and Physiology 32, 259265.CrossRefGoogle ScholarPubMed
Mullen, R. K. (1971 a). Note on the energy metabolism of Peromyscus crinitus in its natural environment. Journal of Mammalogy 52, 633635.CrossRefGoogle Scholar
Mullen, R. K. (1971 b). Energy metabolism and body water turnover rates of two species of free-living kangaroo rats, Dipodomys merriami and Dipodomys microps. Comparative Biochemistry and Physiology 39A, 379380.CrossRefGoogle ScholarPubMed
Mullen, R. K. & Chew, R. M. (1973). Estimating the energy metabolism of free-living Perognathus formosus: A comparison of direct and indirect methods. Ecology 54, 633637.CrossRefGoogle Scholar
Munger, J. C. & Karasov, W. H. (1989). Sublethal parasites and host energy udgets: tapeworm infection in white footed mice. Ecology 70, 904921.CrossRefGoogle Scholar
Mutze, G. J., Green, B. & Newgrain, K. (1991). Water flux and energy use in wild house mice (Mus domesticus) and impact of seasonal aridity on breeding and population levels. Oecologia 4, 529538.CrossRefGoogle Scholar
Nagy, K. A. (1980). CO2 production in animals: analysis of potential errors in the doubly labelled water method. American Journal of Physiology 238, R466R473.Google Scholar
Nagy, K. A. (1987). Field metabolic rate and food requirement scaling in mammals and birds. Ecological Monographs 57, 111128.CrossRefGoogle Scholar
Nagy, K. A. (1989). Field bioenergetics: Accuracy of models and methods. Physiological Zoology 62, 237252.CrossRefGoogle Scholar
Nagy, K. A. (1994). Field bioenergetics of mammals: What determines field metabolic rates? Australian Journal of Zoology 42, 4353.CrossRefGoogle Scholar
Nagy, K. A., Bradley, A. J. & Morris, K. D. (1990). Field metabolic rates, water fluxes, and feeding rates in Quokkas, Setonix bracyurus, and Tammars, Macropus eugenii, in western Australia. Australian Journal of Zoology 37, 553560.CrossRefGoogle Scholar
Nagy, K. A., Bradshaw, S. D. & Clay, B. T. (1991). Field metabolic rate, water flux and food requirements of short-nosed bandicoots, Isoodon obesulus (Marsupialia: Peramelidae). Australian Journal of Zoology 39, 299305.CrossRefGoogle Scholar
Nagy, K. A. & Gruchacz, M. J. (1994). Seasonal water and energy metabolism of the desert-dwelling kangaroo rat (Dipodomys merriami). Physiological Zoology 67, 14611478.CrossRefGoogle Scholar
Nagy, K. A., Lee, A. K., Martin, R. W. & Fleming, M. R. (1988). Field metabolic rate and food requirement of a small dasyurid marsupial, Sminthopsis crassicaudata. Australian Journal of Zoology 36, 293299.CrossRefGoogle Scholar
Nagy, K. A., Meienberger, C., Bradshaw, S. D. & Wooler, R. D. (1995). Field metabolic rate of a small marsupial mammal, the honey possum (Tarsipes rostratus). Journal of Mammalogy 76, 862866.CrossRefGoogle Scholar
Nagy, K. A., Seymour, R. S., Lee, A. K. & Braithwaite, R. (1978). Energy and water budgets of free-living Antechinus stuartii (Marsupialia: Dasyuridae). Journal of Mammalogy 59, 6068.CrossRefGoogle Scholar
Nagy, K. A. & Suckling, G. C. (1985). Field energetics and water balance of sugar gliders, Petaurus breviceps (Marsupialia: Petauridae). Australian Journal of Zoology 33, 683691.CrossRefGoogle Scholar
Noll-Banholzer, U. (1979). Body temperature, oxygen consumption, evaporative water loss and heart rate in the fennec. Comparative Biochemistry and Physiology 62, 585592.CrossRefGoogle Scholar
Oliver, J. E. & Fairchild, R. W. (1984). The Encyclopedia of Climatology. New York: Van Nostrand Reinhold.Google Scholar
Peters, R. H. (1983). The Ecological Implications of Body Size. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Petersen, C. C., Nagy, K. A. & Diamond, J. (1990). Sustained metabolic scope. Proceedings of the National Academy of Sciences USA 87, 23242328.CrossRefGoogle Scholar
Peterson, R. M. Jr, Batzli, G. O. & Banks, E. M. (1986). Activity and energetics of the brown lemming in its natural habitat. Arctic and Alpine Research 8, 131138.CrossRefGoogle Scholar
Poppitt, S. D. (1988). Energetics of reproduction in some insectivorous mammals (Mammalia: Insectivora). PhD Thesis, University of Aberdeen.Google Scholar
Poppitt, S. D., Speakman, J. R. & Racey, P. A. (1993). The energetics of reproduction in the common shrew, Sorex araneus. Physiological Zoology 66, 964982.CrossRefGoogle Scholar
Racey, P. A. & Speakman, J. R. (1987). The energetics of pregnancy and lactation in heterothermic bats. Symposium of Zoological Society of London, vol. 54, pp. 101129. Oxford: Oxford University Press.Google Scholar
Randolph, P. A. (1980). Daily energy metabolism of two rodents (Peromyscus leucopus and Tamais striatus) in their natural environment. Physiological Zoology 53, 7081.CrossRefGoogle Scholar
Rice, D. W. (1967). Cited in Nowak, R. M. (1990). Walker's Mammals of the World, vol. 2, 5th ed. Baltimore, MD: Johns Hopkins.Google Scholar
Root, T. (1988). Energy constraints on avian distribution and abundances. Ecology 69, 330339.CrossRefGoogle Scholar
Rosenman, M. P., Morrison, P. & Feist, D. (1975). Seasonal changes in the metabolic capacity of red-backed voles. Physiological Zoology 48, 303310.CrossRefGoogle Scholar
Rowe-Rowe, D. T., Green, B. & Crafford, J. E. (1989). Estimated impact of feral house mice on sub-antarctic invertebrates at Marion Island. Polar Biology 9, 457460.CrossRefGoogle Scholar
Schartz, R. L. & Zimmerman, J. L. (1971). The time and energy budget of the male dickcissel (Spiza americana). Condor 73, 6576.CrossRefGoogle Scholar
Shoemaker, V. H., Nagy, K. A. & Costa, W. R. (1976). Energy utilisation and temperature regulation by jackrabbits (Lepus califomicus) in the Mojave desert. Physiological Zoology 49, 364375.CrossRefGoogle Scholar
Smith, A. P., Nagy, K. A., Fleming, M. R. & Green, B. (1982). Energy requirements and water turnover in free-living Leadbeater's possums, Gymnobelideus leadbeateri (Marsupialia: Petauridae). Australian Journal of Zoology 30, 717749.CrossRefGoogle Scholar
Speakman, J. R. (1997). Doubly Labelled Water: Theory and Practice. London: Chapman and Hall.Google Scholar
Speakman, J. R. & McQueenie, J. (1996). Limits to sustained metabolic rate: the link between food intake BMR and morphology in reproducing mice (Mus musculus). Physiological Zoology 69, 746769.CrossRefGoogle Scholar
Speakman, J. R. & Racey, P. A. (1987). The energetics of pregnancy and lactation in the brown long-eared bat, Plecotus auritus. In Recent Advances in the Study of Bats, pp. 368393 [Fenton, M. B., Racey, P. A. and Rayner, J. M. V., editors]. Cambridge: Cambridge University Press.Google Scholar
Speakman, J. R. & Racey, P. A. (1989). Hibernal ecology of the pipistrelle bat: energy expenditure, water requirements and mass loss, implications for survival and the function of winter emergence flights. Journal of Animal Ecology 58, 797814.CrossRefGoogle Scholar
Stephenson, P. J. & Racey, P. A. (1993). Reproductive energetics of Terecidae (Mammalia: Insectivora). II. The shrew tenrecs (Microgale spp.) Physiological Zoology 66, 664685.CrossRefGoogle Scholar
Stephenson, P. J., Speakman, J. R. & Racey, P. A. (1994). Field metabolic rate in two species of shrew-tenrec Microgale dobsoni and M. talazaci. Comparative Biochemistry and Physiology 107A, 283287.CrossRefGoogle Scholar
Taylor, C. R. & Wiebel, E. R. (1981). Design of the mammalian respiratory system. 1. Problem and strategy. Respiration Physiology 44, 110.CrossRefGoogle ScholarPubMed
Tomasi, T. E. & Horton, T. H. (1992). Mammalian Energetics Interdisciplinary Views of Metabolism and Reproduction. Ithaca, NY: Comstock.Google Scholar
von Helversen, O. & Reyer, H. U. (1984). Nectar intake and energy expenditure in a flower visiting bat. Oecologia 63, 178184.CrossRefGoogle Scholar
Weathers, W. W., Buttemer, W. A., Hayworth, A. M. & Nagy, K. A. (1984). An evaluation of time-budget estimates of daily energy expenditure in birds. Auk 101, 459472.CrossRefGoogle Scholar
Weathers, W. W. & Nagy, K. A. (1980). Simultaneous doubly labeled water (3HH18O) and time-budget estimates of daily energy-expenditure in Phainopepla nitens. Auk 97, 861867.Google Scholar
Webb, P. I., Hays, G. C., Speakman, J. R. & Racey, P. A. (1992). The functional significance of ventilation frequency and its relationship to oxygen demand in the resting brown long-eared bat, Plecotus auritus. Journal of Comparative Physiology 162B, 144147.CrossRefGoogle ScholarPubMed
Weiner, J. (1987). Maximum energy assimilation rates in the djungarian hamster (Phodopus sungorus). Oecologia 72, 297302.CrossRefGoogle ScholarPubMed
Weiner, J. (1989). Metabolic constraints to mammalian energy budgets. Acta Theriologica 34, 335.CrossRefGoogle Scholar
Williams, J. B. & Nagy, K. A. (1984). Daily energy expenditure of savannah sparrows: comparison of time-energy budget and doubly-labelled water estimates. Auk 101, 221–229.CrossRefGoogle Scholar