Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T15:06:31.579Z Has data issue: false hasContentIssue false

Energy substrates for the rumen epithelium

Published online by Cambridge University Press:  28 February 2007

Didier Rémond
Affiliation:
Station de Recherches sur la Nutrition des Herbivores et
Isabelle Ortigues
Affiliation:
Laboratoire Croissance et Métabolismes des Herbivores, INRA, Theix, 63122 St Genès-Champanelle, France
Jean-Pierre Jouany
Affiliation:
Station de Recherches sur la Nutrition des Herbivores et
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1995

References

Ash, R. & Baird, G. D. (1973). Activation of volatile fatty acids in bovine liver and rumen epithelium. Biochemical Journal 136, 311319.Google Scholar
Baldwin, R. L. & Jesse, B. W. (1991). Technical note: isolation and characterization of sheep ruminal epithelial cells. Journal of Animal Science 69, 36033609.Google Scholar
Baldwin, R. L. & Jesse, B. W. (1992). Developmental changes in glucose and butyrate metabolism by isolated sheep ruminal cells. Journal of Nutrition 122, 11491153.CrossRefGoogle ScholarPubMed
Barnes, R. J., Comline, R. S. & Dobson, A. (1983). Changes in the blood flow to the digestive organs of sheep induced by feeding. Quarterly Journal of Experimental Physiology 68, 7788.CrossRefGoogle Scholar
Beck, U., Emmanuel, B. & Giesecke, D. (1984). The ketonic effect of glucose in the rumen epithelium of ovine (Ovis aries) and bovine (Bos taurus) origin. Comparative Biochemistry and Physiology 77, 517521.Google Scholar
Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews 70, 567590.Google Scholar
Bergman, E. N. & Wolff, J. E. (1971). Metabolism of volatile fatty acids by liver and portal-drained viscera in sheep. American Journal of Physiology 221, 586592.CrossRefGoogle ScholarPubMed
Britton, R. & Krehbiel, C. (1993). Nutrient metabolism by gut tissues. Journal of Dairy Science 76, 21252131.Google Scholar
Broad, T. E., Milligan, L. P. & Boland, M. J. (1980). Arteriovenous changes in the concentration of glutamine and other metabolites across the rumen of sheep. Canadian Journal of Animal Science 60, 5964.Google Scholar
Bush, R. S. (1982). Extraction of enzymes and assessments of metabolism in bovine rumen epithelium. Canadian Journal of Animal Science 62, 429438.Google Scholar
Bush, R. S. & Milligan, L. P. (1971). Enzymes of ketogenesis in bovine rumen epithelium. Canadian Journal of Animal Science 51, 129133.CrossRefGoogle Scholar
Bush, R. S., Milligan, L. P. & Krishnamurti, C. R. (1970). Effects of propionate on ketogenesis from butyrate by bovine tissues. Canadian Journal of Animal Science 50, 210.CrossRefGoogle Scholar
Elliot, J. M. (1980). Propionate metabolism and vitamin B12. In Digestive Physiology and Metabolism in Ruminants, pp. 485503 [Ruckebusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.CrossRefGoogle Scholar
Emmanuel, B. & Milligan, L. P. (1983). Butyrate: acetoacetyl-CoA transferase activity in bovine rumen epithelium. Canadian Journal of Animal Science 63, 355360.Google Scholar
Emmanuel, B., Stangassinger, M. & Giesecke, D. (1982). Production of D(–)-3-hydroxybutyrate by an alternate mechanism in the rumen epithelium of ovine (Ovis aries), and bovine (Bos taurus). Comparative Biochemistry and Physiology 72, 415419.Google Scholar
Engelhardt, W. v. & Hales, J. R. S. (1977). Partition of capillary blood flow in rumen, reticulum, and omasum of sheep. American Journal of Physiology 232, E53E56.Google Scholar
Fell, B. F. & Weekes, T. E. C. (1975). Food intake as a mediator of adaptation in the ruminal epithelium. In Digestion and Metabolism in the Ruminant, pp. 101118 [McDonald, I. W. and Warner, A. C. I., editors]. Armidale, NSW: University of New England Publishing Unit.Google Scholar
Gaebel, G., Martens, H., Suendermann, M. & Galfi, P. (1987). The effect of diet, intraruminal pH and osmolarity on sodium, chloride and magnesium absorption from the temporarily isolated and washed reticulo-rumen of sheep. Quarterly Journal of Experimental Physiology 72, 501511.CrossRefGoogle ScholarPubMed
Giesecke, D., Beck, U. & Emmanuel, B. (1985). Ketonic regulation by certain metabolites in the rumen epithelium. Comparative Biochemistry and Physiology 81, 863867.Google Scholar
Giesecke, D., Beck, U., Wiesmayr, S. & Stangassinger, M. (1979). The effect of rumen epithelial development on metabolic activities and ketogenesis by the tissue in vitro. Comparative Biochemistry and Physiology 62, 459463.Google ScholarPubMed
Goodlad, R. A. (1981). Some effects of diet on the mitotic index and the cell cycle of the ruminal epithelium of sheep. Quarterly Journal of Experimental Physiology 66, 487499.CrossRefGoogle ScholarPubMed
Goosen, P. C. M. (1976). Metabolism in rumen epithelium. Oxidation of substrates and formation of ketone bodies by pieces of rumen epithelium. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 37, 1425.CrossRefGoogle ScholarPubMed
Gross, K. L., Harmon, D. L. & Avery, T. B. (1990). Portal-drained visceral flux of nutrients in lambs fed alfalfa or maintained by total intragastric infusion. Journal of Animal Science 68, 214221.CrossRefGoogle ScholarPubMed
Harmon, D. L. (1986). Influence of dietary energy intake and substrate addition on the in vitro metabolism of glucose and glutamine in rumen epithelial tissue. Comparative Biochemistry and Physiology 85, 643647.Google ScholarPubMed
Harmon, D. L., Gross, K. L., Krehbiel, C. R., Kreikemeier, K. K., Bauer, M. L. & Britton, R. A. (1991). Influence of dietary forage and energy intake on metabolism and acyl-CoA synthetase activity in bovine ruminal epithelial tissue. Journal of Animal Science 69, 41174127.CrossRefGoogle ScholarPubMed
Huntington, G. B., Reynolds, C. K. & Stroud, B. H. (1989). Techniques for measuring blood flow in splanchnic tissues of cattle. Journal of Dairy Science 72, 15831595.CrossRefGoogle ScholarPubMed
Huntington, G. B., Reynolds, P. J. & Tyrrel, H. F. (1983). Net absorption and ruminal concentrations of metabolites in nonpregnant dry holstein cows before and after intraruminal acetic acid infusion. Journal of Dairy Science 66, 19011908.Google Scholar
Jesse, B. W., Solomon, R. K. & Baldwin, R. L. (1992). Palmitate metabolism by isolated sheep rumen epithelial cells. Journal of Animal Science 70, 22352242.Google Scholar
Kelly, J. M., McBride, B. W. & Milligan, L. P. (1993). In vitro Ouabain-sensitive respiration and protein synthesis in ruminal epithelial papillae of Hereford steers fed either alfalfa or bromegrass hay once daily. Journal of Animal Science 71, 27992808.Google Scholar
Krehbiel, C. R., Harmon, D. L. & Schnieder, J. E. (1992). Effect of increasing ruminal butyrate on portal and hepatic nutrient flux in steers. Journal of Animal Science 70, 904914.CrossRefGoogle ScholarPubMed
Leng, R. A., Steel, J. W. & Luick, J. R. (1967). Contribution of propionate to glucose synthesis in sheep. Biochemical Journal 103, 785790.CrossRefGoogle ScholarPubMed
Lyford, S. J. Jr (1988). Growth and development of the ruminant digestive system. In The Ruminant Animal. Digestive Physiology and Nutrition, pp. 4463 [Church, D. C., editor]. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
Ortigues, I. (1991). Adaptation du métabolisme énergétique des ruminants à la sous-alimentation. Quantification au niveau de l'animal entier et de tissus corporels (Adaptation of energy metabolism to undernutrition in ruminants. Quantification in whole animal and in individual tissues). Reproduction Nutrition Development 31, 593616.Google Scholar
Peters, J. P., Shen, R. Y. W. & Robinson, J. A. (1992). Disappearance of acetic acid from the bovine reticulorumen at basal and elevated concentrations of acetic acid. Journal of Animal Science 70, 15091517.Google Scholar
Peters, J. P., Shen, R. Y. W., Robinson, J. A. & Chester, S. T. (1990). Disappearance and passage of propionic acid from the rumen of beef steer. Journal of Animal Science 68, 33373349.Google Scholar
Pethick, D. W., Linsay, D. B., Barker, P. J. & Northrop, A. J. (1981). Acetate supply and utilization by the tissues of sheep in vivo. British Journal of Nutrition 46, 97110.CrossRefGoogle ScholarPubMed
Rémond, D., Chaise, J. P., Delval, E. & Poncet, C. (1993 a). Net flux of metabolites across the rumen wall of sheep fed twice a day with orchardgrass hay. Journal of Animal Science 71, 25292538.Google Scholar
Rémond, D., Poncet, C. & Lefaivre, J. (1993 b). Technical note: Ruminal vein catheterization and continuous blood flow measurement in ruminal arteries of sheep. Journal of Animal Science 71, 12761280.Google Scholar
Reynolds, C. K. & Huntington, G. B. (1988 a). Partition of portal-drained visceral net flux in beef steers. 1. Blood flow and net flux of oxygen, glucose and nitrogenous compounds across stomach and post-stomach tissues. British Journal of Nutrition 60, 539551.Google Scholar
Reynolds, C. K. & Huntington, G. B. (1988 b). Partition of portal-drained visceral net flux in beef steers. 2. Net flux of volatile fatty acids, D-β-hydroxybutyrate and L-lactate across stomach and post-stomach tissues. British Journal of Nutrition 60, 553562.Google Scholar
Scaife, J. R. & Tichivangana, J. Z. (1980). Short chain acyl-CoA synthetases in ovine rumen epithelium. Biochimica et Biophysica Acta 619, 445450.Google Scholar
Seal, C. J. & Parker, D. S. (1994). Effect of intraruminal propionic acid infusion on metabolism of mesenteric-and portal-drained viscera in growing steers fed a forage diet: volatile fatty acids, glucose, and lactate. Journal of Animal Science 72, 13251334.Google Scholar
Seal, C. J., Sarker, A. & Parker, D. S. (1989). Rumen propionate production rate and absorption of fermentation end-products into the portal vein of forage and forage-concentrate fed cattle. Proceedings of the Nutrition Society 48, 143A.Google Scholar
Siciliano-Jones, J. & Murphy, M. R. (1989). Production of volatile fatty acids in the rumen and cecum-colon of steers as affected by forage:concentrate and forage physical form. Journal of Dairy Science 72, 485492.Google Scholar
Stangassinger, M., Beck, U. & Emmanuel, B. (1979). Is glucose ketonic in the rumen epithelium? Annales de Recherches Vétérinaires 10, 413416.Google Scholar
Weekes, T. E. C. (1972). Effects of pregnancy and lactation in sheep on the metabolism of propionate by the ruminal mucosa and on some enzymatic activities in the ruminal mucosa. Journal of Agricultural Science, Cambridge 79, 409421.CrossRefGoogle Scholar
Weekes, T. E. C. (1974). The in vitro metabolism of propionate and glucose by the rumen epithelium. Comparative Biochemistry and Physiology 49, 393406.Google ScholarPubMed
Weekes, T. E. C. & Webster, A. J. F. (1975). Metabolism of propionate in the tissues of the sheep gut. British Journal of Nutrition 33, 425438.Google Scholar
Weigand, E., Young, J. W. & McGilliard, A. D. (1972). Extent of propionate metbolism during absorption from the bovine ruminoreticulum. Biochemical Journal 126, 201209.CrossRefGoogle Scholar
Weigand, E., Young, J. W. & McGilliard, A. D. (1975). Volatile fatty acid metabolism by rumen mucosa from cattle fed hay or grain. Journal of Dairy Science 58, 12941300.Google Scholar
Weston, R. H. & Hogan, J. P. (1968). The digestion of pasture plants by sheep. I. Ruminal production of volatile fatty acids by sheep offered diets of ryegrass and forage oats. Australian Journal of Agricultural Research 19, 419432.CrossRefGoogle Scholar
Young, J. W., Thorp, S. L. & De Lumen, H. Z. (1969). Activity of selected gluconeogenic and lipogenic enzymes in bovine rumen mucosa, liver and adipose tissue. Biochemical Journal 114, 8388.Google Scholar