Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T14:49:21.694Z Has data issue: false hasContentIssue false

Dipeptides in clinical nutrition

Published online by Cambridge University Press:  28 February 2007

Peter Fürst
Affiliation:
Institute for Biological Chemistry and Nutrition, University of Hohenheim, Garbenstraβe 30, D-7000 Stuttgart 70, FRG
Sabine Albers
Affiliation:
Institute for Biological Chemistry and Nutrition, University of Hohenheim, Garbenstraβe 30, D-7000 Stuttgart 70, FRG
Peter Stehle
Affiliation:
Institute for Biological Chemistry and Nutrition, University of Hohenheim, Garbenstraβe 30, D-7000 Stuttgart 70, FRG
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘New substrates in clinical nutrition’
Copyright
Copyright © The Nutrition Society 1990

References

REFERENCES

Adibi, S. A. (1987). Experimental basis for use of peptides as substrates for parenteral nutrition: a review. Metabolism 36, 10011011.CrossRefGoogle ScholarPubMed
Adibi, S. A., Fekl, W., Fürst, P. & Oehmke, M. (1987). Dipeptides as new substrates in nutrition therapy. In Contributions to Infusion Therapy and Clinical Nutrition, vol. 17, pp. 6193 [Adibi, S. A., Fekl, W., Fürst, P. and Oehmke, M., editors]. Basel, München, New York: Karger.Google Scholar
Adibi, S. A. & Krzysik, B. A. (1977). Effect of nephrectomy and enterectomy on plasma clearance of intravenously administered dipeptides in rat. Clinical Science and Molecular Medicine 52, 205213.Google Scholar
Adibi, S. A., Krzysik, B. A. & Drash, A. L. (1977). Metabolism of intravenously administered dipeptides in rats: effects on amino acid pools, glucose concentration and insulin and glucagon secretion. Clinical Science and Molecular Medicine 52, 193204.Google ScholarPubMed
Adibi, S. A. & Morse, E. L. (1982). Enrichment of glycine pool in plasma and tissue by glycine, di-, tri- and tetraglycine. American Journal of Physiology 243, 413417.Google ScholarPubMed
Albers, S., Abele, R., Amberger, I., Mangold, J., Pfaender, P. & Fürst, P. (1984). Komplette parenterale Ernährung mit und ohne einem synthetischen Dipeptid (L-Alanyl-L-Glutamin) bei Ratten mit experimenteller Katabolie. Aktuelle Ernährungsmedizin 9, 147149.Google Scholar
Albers, S., Wernerman, J., Stehle, P., Vinnars, E. & Fürst, P. (1988). Availability of amino acids supplied intravenously in healthy man as synthetic dipeptides: kinetic evaluation of L-alanyl-L-glutamine and glycyl-L-tyrosine. Clinical Science 75, 463468.CrossRefGoogle Scholar
Albers, S., Wernerman, J., Stehle, P., Vinnars, E. & Fürst, P. (1989). Availability of amino acids supplied by constant intravenous infusion of synthetic dipeptides in healthy man. Clinical Science 76, 643648.CrossRefGoogle ScholarPubMed
Amberger, I., Roth, E., Karner, J., Hanusch, J. & Fürst, P. (1985). In vivo utilization of a glutamine containing synthetic dipeptide alanyl-glutamine (Ala-Gln) in dogs. Clinical Nutrition 4, 72.Google Scholar
Askanazi, J., Carpentier, Y. A., Michelsen, C. B., Elwyn, D. H., Fürst, P., Kantrowitz, L. R., Gump, F. E. & Kinney, J. M. (1980 a). Muscle and plasma amino acids following injury. Influence of intercurrent infection. Annals of Surgery 192, 7885.CrossRefGoogle ScholarPubMed
Askanazi, J., Fürst, P., Michelsen, C. B., Elwyn, D. H., Vinnars, E., Gump, F. E., Stinchfield, F. E. & Kinney, J. M. (1980 b). Muscle and plasma amino acids after injury. Hypocaloric glucose vs. amino acid infusion. Annals of Surgery 191, 465472.CrossRefGoogle ScholarPubMed
Bergström, J. (1962). Muscle electrolytes in man determined by neutron activation analysis on needle biopsy specimens. A study on normal subjects, kidney patients, and patients with chronic diarrhoea. Scandinavian Journal of Clinical and Laboratory Investigations 14, 7110.Google Scholar
Christensen, H. N. & Kilberg, M. S. (1987). Amino acid transport across the plasma membrane: role of regulation in interorgan flows. In Amino Acid Transport in Animal Cells, pp. 1045 [Yudilevich, D. L. and Boyd, C. A. R., editors]. Manchester: Manchester University Press.Google Scholar
Cuthbertson, D. P. (1982). Parenteral and enteral nutrition: whither the future. Clinical Nutrition 1, 523.CrossRefGoogle ScholarPubMed
Elman, R. (1937). Amino acid content of the blood following intravenous injection of hydrolysed casein. Proceedings of the Society for Experimental Biology and Medicine 37, 437440.CrossRefGoogle Scholar
Fürst, P. (1985 a). Peptides in parenteral nutrition. Clinical Nutrition 4, 105115.CrossRefGoogle Scholar
Fürst, P. (1985 b). Regulation of intracellular metabolism of amino acids. Sir Arvid Wretlind Lecture. In Nutrition in Cancer and Trauma Sepsis, pp. 2153 [Bozzetti, F. and Dionigi, R., editors]. Basel, München, New York: Karger.Google Scholar
Ganapathy, V., Miyamoto, Y. & Leibach, F. H. (1987). Driving force for peptide transport in mammalian intestine and kidney. In Contributions to Infusion Therapy and Clinical Nutrition, vol. 17, pp. 5468 [Adibi, S. A., Fekl, W., Fürst, P. and Oehmke, M., editors]. Basel, München, New York: Karger.Google Scholar
Gladtke, E. & von Hattingberg, H. M. (1977). Verteilungsvolumen, Kompartimente und Elimination. In Pharmacokinetik, pp. 325 [Gladtke, E. and von Hattingberg, H. M., editors]. Berlin, Heidelberg, New York: Springer Verlag.CrossRefGoogle Scholar
Graser, T. A., Godel, H. G., Albers, S., Földi, P. & Fürst, P. (1985). An ultra rapid and sensitive high-performance liquid chromatographic method for determination of tissue and plasma free amino acids. Analytical Biochemistry 151, 142152.CrossRefGoogle ScholarPubMed
Groeger, U., Stehle, P., Fürst, P., Leuchtenberger, W. & Drauz, K. (19881989). Papain-catalyzed synthesis of dipeptides. Food Biotechnology 2, 187198.CrossRefGoogle Scholar
Henriques, V. & Anderson, A. C. (1913). Über parenterale Ernährung durch intravenöse Injektion. Hoppe-Seylers Zeitschrift für physiologische Chemie 88, 357369.CrossRefGoogle Scholar
Hundal, H. S. & Rennie, M. J. (1988). Skeletal muscle tissue contains extracellular aminopeptidase activity against Ala-Gln but no peptide transporter. European Journal of Clinical Investigation 18, A34, 163.Google Scholar
Jepson, M. M., Bates, P. C., Broadbent, P., Pell, J. M. & Millward, D. J. (1988). Relationship between glutamine concentration and protein synthesis in rat skeletal muscle. American Journal of Physiology 255, E166E172.Google ScholarPubMed
Kapadia, C. R., Muhlbacher, F., Smith, R. J. & Wilmore, D. W. (1982). Alterations in glutaminc metabolism in response to operative stress and food deprivation. Surgical Forum 33, 1921.Google Scholar
Karner, J., Roth, E., Stehle, P., Albers, S. & Fürst, P. (1989). Influence of glutamine-containing dipeptides on muscle amino acid metabolism. In Nutrition in Clinical Practice, pp. 6570 [Hartig, W., Dietze, G., Weiner, R. and Fürst, P., editors]. Basel: Karger.Google Scholar
Krzysik, B. A. & Adibi, S. A. (1979). Comparison of metabolism of glycine injected intravenously in free and dipeptide form. Metabolism 28, 12111217.CrossRefGoogle Scholar
Lochs, H., Morse, E. L. & Adibi, S. A. (1986). Mechanism of hepatic assimilation of dipeptides. Transport vs. hydrolysis. Journal of Biological Chemistry 261, 1497614981.CrossRefGoogle Scholar
MacLennan, P. A., Brown, R. A. & Rennie, M. J. (1987). A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS Letters 215, 187191.CrossRefGoogle ScholarPubMed
Mcister, A. (1956). Metabolism of glutamine. Physiological Reviews 36, 103127.CrossRefGoogle Scholar
Milewsky, P. J., Threlfall, C. J., Heath, D. F., Holbrock, I. B., Wilford, K. & Irving, M. H. (1982). Intracellular free amino acids in undernourished patients with or without sepsis. Clinical Science 62, 8391.CrossRefGoogle Scholar
Muhlbacher, F., Kapadia, D. R., Colpoys, M. F., Smith, R. J. & Wilmore, D. W. (1984). Effects of glucocorticoids on glutamine metabolism in skeletal muscle. American Journal of Physiology 247, E75E83.Google ScholarPubMed
Rennie, M. J., Hundal, H. S. & Babij, P. (1986). Characteristics of a glutamine carrier in skeletal muscle have important consequences for nitrogen loss in injury, infection and chronic disease. Lancet ii, 10081012.CrossRefGoogle Scholar
Roth, E., Funovics, J. & Muhlbacher, F. (1982). Metabolic disorders in severe abdominal sepsis: glutamine deficiency in skeletal muscle. Clinical Nutrition 1, 2541.CrossRefGoogle ScholarPubMed
Roth, E., Karner, J., Ollenschläger, G., Karner, J., Simmel, A., Fürst, P. & Funovics, J. (1988). Alanylglutamine reduces muscle loss of alanine and glutamine in postoperative anaesthetized dogs. Clinical Science 75, 641648.CrossRefGoogle ScholarPubMed
Salter, M., Knowles, R. G. & Pogson, C. I. (1986). Transport of the aromatic amino acids into isolated rat liver cells. Biochemical Journal 233, 499506.CrossRefGoogle ScholarPubMed
Souba, W. W., Smith, R. J. & Wilmore, D. W. (1985 a). Effects of glucocorticoids on glutamine metabolism in visceral organs. Metabolism 34, 450456.CrossRefGoogle ScholarPubMed
Souba, W. W., Smith, R. J. & Wilmore, D. W. (1985 b). Glutamine metabolism by the intestinal tract. Journal of Parenteral and Enteral Nutrition 9, 605617.CrossRefGoogle ScholarPubMed
Souba, W. W. & Wilmore, D. W. (1983). Postoperative alteration of arteriovenous exchange of amino acids across the gastrointestinal tract. Surgery 94, 342350.Google ScholarPubMed
Souba, W. W. & Wilmore, D. W. (1985). Gut-liver interaction during accelerated gluconeogenesis. Archives of Surgery 120, 6670.CrossRefGoogle ScholarPubMed
Stehle, P., Albers, S., Pollack, L. & Fürst, P. (1988 a). In vivo utilization of cystine-containing synthetic short chain peptides after intravenous bolus injection in the rat. Journal of Nutrition 118, 14701474.CrossRefGoogle ScholarPubMed
Stehle, P., Bahsitta, H. P., Monter, B. & Fürst, P. (1990). Papain-catalyzed synthesis of dipeptides. A novel approach using free amino acids as nucleophiles. Enzyme and Microbial Technology 12, 5660.CrossRefGoogle Scholar
Stehle, P., Bohlmann, F. & Fürst, P. (1988 b). Peptide hydrolase activity of human plasma. In vitro cleavage of glutamine-, tyrosine- and cystine-containing short chain peptides. Clinical Nutrition 7, 40.Google Scholar
Stehle, P. & Fürst, P. (1985). Isotachophoretic control of peptide synthesis and purification. A novel approach using ultraviolet detection at 206 nm. Journal of Chromatography 346, 271279.CrossRefGoogle Scholar
Stehle, P. & Fürst, P. (1987). The occurrence of neurotoxic pyroglutamic acid in parenteral amino acid solutions. Specific determinations by means of capillary isotachophoresis. Clinica Chimica Acta 169, 323328.CrossRefGoogle ScholarPubMed
Stehle, P., Kühne, B., Kubin, W., Fürst, P. & Pfaender, P. (1982 a). Synthesis and characterization of tyrosine-and glutamine-containing peptides. Journal of Applied Biochemistry 4, 280286.Google Scholar
Stehle, P., Pfaender, P. & Färst, P. (1982 b). Isotachophoretic separation of two synthetic peptides. Journal of Chromatography 249, 408412.CrossRefGoogle Scholar
Stehle, P., Pfaender, P. & Färst, P. (1984). Isotachophoretic analysis of a synthetic dipeptide L-alanyl-L-glutamine. Evidence for stability during heat sterilization. Journal of Chromatography 294, 507512.CrossRefGoogle Scholar
Stehle, P., Ratz, I. & Fürst, P. (1989 a). In vivo utilization of intravenously supplied L-alanyl-L-glutamine in various tissues of the rat. Nutrition 5, 411415.Google ScholarPubMed
Stehle, P., Zander, J., Mertes, N., Albers, S., Puchstein, Ch., Lawin, P. & Fürst, P. (1989 b). Effect of parenteral glutamine peptide supplements on muscle glutamine loss and nitrogen balance after major surgery. Lancet i, 231233.CrossRefGoogle Scholar
Vinnars, E., Bergström, J. & Fürst, P. (1975). Influence of the postoperative state on the intracellular free amino acids in human muscle tissue. Annals of Surgery 182, 665671.CrossRefGoogle ScholarPubMed
Wren, C. (1665). As reported by Henry Oldenburn. Philosophic Transactions Royal Society London. Cited by Annan, G. L. (1939). Bulletin of New York Academy of Medicine 15, 623641.Google Scholar
Wretlind, A. (1972). Complete intravenous nutrition. Theoretical and experimental background. Nutrition Metabolism 14, 157.CrossRefGoogle ScholarPubMed
Wretlind, A. (1981). Parenteral Nutrition. Nutrition Reviews. 39, 257265.CrossRefGoogle ScholarPubMed