Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T16:26:55.015Z Has data issue: false hasContentIssue false

Copper and zinc metabolism in health and disease: speciation and interactions

Published online by Cambridge University Press:  28 February 2007

Ian Bremner
Affiliation:
Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB
John H. Beattie
Affiliation:
Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Symposium on ‘Micronutrient interactions’
Copyright
Copyright © The Nutrition Society 1995

References

Barber, E. F. & Cousins, R. J. (1988). Interleukin-1-stimulated induction of ceruloplasmin synthesis in normal and copper-deficient rats. Journal of Nutrition 118, 375381.CrossRefGoogle ScholarPubMed
Beattie, J. H., Black, D. J. & Bremner, I. (1993). In Trace Elements in Man and Animals – TEMA 8, pp. 159163 [Anke, M., Meissner, D. and Mills, C. F., editors]. Gersdorf Verlag Media Touristik.Google Scholar
Birkenmeier, E. H. & Gordon, J. I. (1986). Developmental regulation of a gene that encodes a cysteine-rich intestinal protein and maps near the murine immunoglobulin heavy chain locus. Proceedings of the National Academy of Sciences, USA 83, 25162520.CrossRefGoogle ScholarPubMed
Blalock, T. L., Dunn, M. A. & Cousins, R. J. (1988). Metallothionein gene expression in rats: tissue-specific regulation by dietary copper and zinc. Journal of Nutrition 118, 222228.CrossRefGoogle ScholarPubMed
Bremner, I. (1987). Nutritional and physiological significance of metallothionein. In Metallothionein II: Proceedings of the 2nd International Symposium on Metallothionein and Other Low Molecular Weight Metal-Binding Proteins, pp. 81107 [Kägi, J. H. R. and Kojima, Y., editors]. Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
Bremner, I. (1993). Involvement of metallothionein in the regulation of mineral metabolism. In Metallothionein III. Biological Roles and Medical Implications, pp. 111124 [Suzuki, K. T., Imura, N. and Kimura, M., editors]. Basel: Birkhaüser Verlag AG.Google Scholar
Bremner, I., Mehra, R. K. & Sato, M. (1987). Metallothionein in blood, bile and urine. In Metallothionein II: Proceedings of the 2nd International Symposium on Metallothionein and Other Low Molecular Weight Metal-Binding Proteins, pp. 507517 [Kägi, J. H. R. and Kojima, Y., editors]. Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
Bremner, I., Young, B. W. & Mills, C. F. (1976). Protective effect of zinc supplementation against copper toxicosis in sheep. British Journal of Nutrition 36,551561.CrossRefGoogle ScholarPubMed
Brewer, G. J., Hill, G. M., Prasad, A. S., Cossack, Z. T. & Rabbani, P. (1983). Oral zinc therapy for Wilson's disease. Annals of Internal Medicine 99, 314320.CrossRefGoogle ScholarPubMed
Brewer, G. J., Yuzbasiyan-Gurkan, V., Johnson, V., Dick, R. D. & Wang, Y. (1993). Treatment of Wilson's disease with zinc: XII. Dose regimen requirements. American Journal of Medical Science 305, 199202.CrossRefGoogle ScholarPubMed
Bull, P. C., Thomas, G. R., Rommens, J. M., Forbes, J. R. & Cox, D. W. (1993). The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nature Genetics 5, 327337.CrossRefGoogle Scholar
Cousins, R. J. (1989). Systemic transport of zinc. In Zinc in Human Biology, pp. 7993 [Mills, C. F., editor]. London: Springer-Verlag.CrossRefGoogle Scholar
Danks, D. M. (1989). Hereditary disorders of copper metabolism in Wilson's disease and Menkes' disease. In The Metabolic Basis of Inherited Diseases, pp. 14111431 [Scriver, C. R., Beaudet, A., Sly, W. J. and Velle, D., editors]. New York: McGraw-Hill.Google Scholar
Dunn, M. A. & Cousins, R. J. (1989). Kinetics of zinc metabolism in the rat: effect of dibutyryl cAMP. American Journal of Physiology 256, E420E430.Google ScholarPubMed
Falchuk, K. H. (1993). Zinc in developmental biology: the role of metal-dependent transcription regulation. In Essential and Toxic Elements in Human Health and Disease: An Update, pp. 91111 [Prasad, A. S., editor]. New York: Wiley-Liss.Google Scholar
Fischer, P. W. F., Giroux, A. & L'Abbe, M. R. (1984). Effect of zinc supplements on copper status in adult men. American Journal of Clinical Nutrition 40, 743746.CrossRefGoogle Scholar
Fleet, J. C., Turnbull, A. J., Bourcier, M. & Wood, R. J. (1993). Vitamin D-sensitive and quinacrine-sensitive zinc transport in human intestinal cell line Caco-2. American Journal of Physiology 264, G1037G1045.Google ScholarPubMed
Freedman, J. H., Ciriolo, M. R. & Peisach, J. (1989). The role of glutathione in copper metabolism and toxicity. Journal of Biological Chemistry 264, 55985605.CrossRefGoogle ScholarPubMed
Gibbs, K. & Walshe, J. M. (1980). Biliary excretion of copper in Wilson's disease. Lancet ii, 538539.CrossRefGoogle Scholar
Hall, A. C., Young, B. W. & Bremner, I. (1979). Intestinal metallothionein and the mutual antagonism between copper and zinc in the rat. Journal of Inorganic Biochemistry 11, 5766.CrossRefGoogle ScholarPubMed
Hamilton, D. L., Bellamy, J. E. C., Valberg, J. D. & Valberg, L. S. (1978). Zinc, cadmium and iron interaction during intestinal absorption in iron-deficient mice. Canadian Journal of Physiology and Pharmacology 56, 384388.CrossRefGoogle ScholarPubMed
Hempe, J. M. & Cousins, R. J. (1991). Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport. Proceedings of the National Academy of Science, USA 88, 96719674.CrossRefGoogle ScholarPubMed
Hempe, J. M. & Cousins, R. J. (1992). Cysteine-rich intestinal protein and intestinal metallothionein: an inverse relationship as a conceptual model for zinc absorption in rats. Journal of Nutrition 122, 8995.CrossRefGoogle ScholarPubMed
Hill, C. H. & Matrone, G. (1970). Chemical parameters in the study of in vivo and in vitro interactions of transition elements. Federation Proceedings 29, 14741481.Google Scholar
Hoogenraad, T. U., Van den Hamer, C. J. A., Koevoet, R. & de Ruylir Korver, E. G. W. M. (1978). Oral zinc in Wilson's disease. Lancet II, 1262.CrossRefGoogle Scholar
Kosa, J. L., Michelsen, J. W., Louis, H. A., Olsen, J. I., Davis, D. R., Beckerle, M. C. & Winge, D. R. (1994). Common metal ion coordination in LIM domain proteins. Biochemistry 33, 468477.CrossRefGoogle ScholarPubMed
L'Abbe, M. R. & Fischer, P. W. F. (1984). The effects of dietary zinc on the activity of copper-requiring metalloenzymes. Journal of Nutrition 114, 823828.CrossRefGoogle ScholarPubMed
Lehman-McKeeman, L. D., Andrews, G. K. & Klaassen, C. D. (1988). Mechanisms of regulation of rat hepatic metallothionein-I and metallothionein-II levels following administration of zinc. Toxicology and Applied Pharmacology 92, 19.CrossRefGoogle ScholarPubMed
Lehman-McKeeman, L. D., Kershaw, W. C. & Klaassen, C. D. (1991). Species differences in metallothionein regulation: a comparison of the induction of isometallothioneins in rats and mice. In Metallothionein in Biology and Medicine, pp. 121131 [Klaassen, C. D. and Suzuki, K. T., editors]. Boca Raton: CRC Press Inc.Google Scholar
Levenson, C. W., Shay, N. F., Hempe, J. M. & Cousins, R. J. (1994). Expression of cysteine-rich intestinal protein in rat intestine and transfected cells is not zinc dependent. Journal of Nutrition 124, 1317.CrossRefGoogle Scholar
Levenson, C. W., Shay, N. F., Lee-Ambrose, L. M. & Cousins, R. J. (1993). Regulation of cysteine-rich intestinal protein by dexamethasone in the neonatal rat. Proceedings of the National Academy of Science, USA 90, 712715.CrossRefGoogle ScholarPubMed
Lowe, N. M., Bremner, I. & Jackson, M. J. (1991). Plasma 65Zn kinetics in the rat. British Journal of Nutrition 65, 445455.CrossRefGoogle ScholarPubMed
Mercer, J. F. B., Grimes, A., Ambrosini, L., Lockhart, P., Paynter, J. A., Dierick, H. & Glover, T. W. (1994). Mutations in the murine homologue of the Menkes gene in dappled and blotchy mice. Nature Genetics 6, 374378.CrossRefGoogle ScholarPubMed
Mercer, J. F. B., Livingston, J., Hall, B., Paynter, J. A., Begy, C., Chandrasekharappa, S., Lockhart, P., Grimes, A., Bhave, M., Siemieniak, D. & Glover, T. W. (1993). Isolation of a partial candidate gene for Menkes disease by positional cloning. Nature Genetics 3, 2025.CrossRefGoogle ScholarPubMed
Nartey, N. O., Banerjee, D. & Cherian, M. G. (1987). Immunohistochemical localization of metallothionein in cell nucleus and cytoplasm of fetal human liver and kidney and its changes during development. Pathology 19, 233238.CrossRefGoogle ScholarPubMed
Nielson, K. B. & Winge, D. R. (1983). Order of metal binding in metallothionein. Journal of Biological Chemistry 258, 1306313069.CrossRefGoogle ScholarPubMed
Nielson, K. B. & Winge, D. R. (1984). Preferential binding of copper to the β domain of metallothionein. Journal of Biological Chemistry 259, 49414946.CrossRefGoogle Scholar
Oestreicher, P. & Cousins, R. J. (1985). Copper and zinc absorption in the rat: mechanism of mutual antagonism. Journal of Nutrition 115, 159166.CrossRefGoogle ScholarPubMed
Palmiter, R. D. (1987). Molecular biology and metallothionein gene expression. In Metallothionein II: Proceedings of the 2nd International Symposium on Metallothionein and Other Low Molecular Weight Metal-Binding Proteins, pp. 6380 [Kägi, J. H. R. and Kojima, Y., editors]. Basel: Birkhäuser Verlag.CrossRefGoogle Scholar
Palmiter, R. D. (1994). Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proceedings of the National Academy of Science, USA 91, 12191223.CrossRefGoogle ScholarPubMed
Paynter, J. A., Camakaris, J. & Mercer, J. F. B. (1990). Analysis of hepatic copper, zinc, metallothionein and metallothionein-Ia mRNA in developing sheep. European Journal of Biochemistry 190, 149154.CrossRefGoogle ScholarPubMed
Peterson, M. G., Hannan, F. & Mercer, J. F. B. (1988). The sheep metallothionein gene family. Structure, sequence and evolutionary relationship of five linked genes. European Journal of Biochemistry 174, 417424.CrossRefGoogle ScholarPubMed
Peterson, M. G. & Mercer, J. F. B. (1988). Differential expression of four linked sheep metallothionein genes. European Journal of Biochemistry 174, 425429.CrossRefGoogle ScholarPubMed
Prasad, A. S., Brewer, G. J., Schoomaker, E. B. & Rabbani, P. (1978). Hypocupremia induced by zinc therapy in adults. Journal of the American Medical Association 240, 21662168.CrossRefGoogle ScholarPubMed
Radtke, F., Heuchel, R., Georgiev, O., Hergersberg, M., Gariglio, M., Dembic, Z. & Schaffner, W. (1993). Cloned transcription factor MTF-1 activates the mouse metallothionein I promotor. The EMBO Journal 12, 13551362.CrossRefGoogle Scholar
Richards, M. P. & Cousins, R. J. (1976). Metallothionein and its relationship to the metabolism of dietary zinc in the rat. Journal of Nutrition 106, 15911599.CrossRefGoogle Scholar
Sandstead, H. H. (1982). Copper bioavailability and requirements. American Journal of Clinical Nutrition 35, 809814.CrossRefGoogle ScholarPubMed
Stillman, M. J., Cai, W. & Zelazowski, A. J. (1987). Cadmium binding to metallothioneins. Domain specificity in reactions of α and β fragments, apometallothionein, and zinc metallothionein with Cd2+. Journal of Biological Chemistry 262, 45384548.CrossRefGoogle ScholarPubMed
Stillman, M. J. & Zelazowski, A. J. (1988). Domain specificity in metal binding to metallothionein. A circular dichroism and magnetic circular dichroism study of cadmium and zinc binding at temperature extremes. Journal of Biological Chemistry 263, 61286133.CrossRefGoogle ScholarPubMed
Sugawara, N., Li, D., Sugawara, C. & Miyake, H. (1993). Decrease in biliary excretion of copper in Long-Evans Cinnamon (LEC) rats causing spontaneous hepatitis due to a gross accumulation of hepatic copper. Research Communications in Chemical Pathology and Pharmacology 81, 4552.Google ScholarPubMed
Sugawara, N., Sugawara, C., Sato, M., Takahashi, H. & Mori, M. (1992). Excessive accumulation of hepatic copper in LEC rats aged 80 days without hapatitis and 130 days with hepatitis. Pharmacology and Toxicology 71, 321324.CrossRefGoogle Scholar
Tohyama, C., Suzuki, J. S., Hemelraad, J., Nishimura, N. & Nishimura, H. (1993). Induction of metallothionein and its localization in the nucleus of rat hepatocytes after partial hepatectomy. Hepatology 18, 11931201.CrossRefGoogle ScholarPubMed
Tsujikawa, K., Imai, T., Kakutani, M., Kayamori, Y., Mimura, T., Otaki, N., Kimura, M., Fukuyama, R. & Shimizu, N. (1991). Localization of metallothionein in nuclei of growing primary cultured adult rat hepatocytes. FEBS Letters 283, 239242.CrossRefGoogle ScholarPubMed
Vulpe, C., Levinson, B., Whitney, S., Packman, S. & Gitschier, J. (1993). Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nature Genetics 3, 713.CrossRefGoogle ScholarPubMed
Wang, X., Lee, G., Liebhaber, S. A. & Cooke, N. E. (1992). Human cysteine-rich protein. A member of the LIWdouble-finger family displaying coordinate serum induction with c-myc. Journal of Biological Chemistry 267, 91769184.CrossRefGoogle ScholarPubMed
Weismann, K., Hoe, S., Knudsen, L. & Sorensen, S. S. (1979). 65Zn absorption in patients suffering from acrodermatitis enteropathica and in normal adults assessed by whole-body counting technique. British Journal of Dermatology 101, 573579.CrossRefGoogle ScholarPubMed
Williams, R. J. P. (1989). An introduction to the biochemistry of zinc. In Zinc in Human Biology, pp. 1531 [Mills, C. F., editor]. London: Springer-Verlag.CrossRefGoogle Scholar
Willson, R. L. (1989). Zinc and iron in free radical pathology and cellular control. In Zinc in Human Biology, pp. 147172 [Mills, C. F., editor]. London: Springer-Verlag.CrossRefGoogle Scholar
Yardick, M. K., Kenney, M. A. & Winterfield, E. A. (1989). Iron, copper and zinc status: response to supplementation with zinc or zinc and iron in adult females. American Journal of Clinical Nutrition 49, 145150.Google Scholar
Yuzbasiyan-Gurkan, V., Grider, A., Nostrant, T., Cousins, R. J. & Brewer, G. J. (1992). Treatment of Wilson's disease with zinc: X. Intestinal metallothionein induction. Journal of Laboratory Clinical Medicine 120, 380386.Google ScholarPubMed