Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-09T07:01:14.823Z Has data issue: false hasContentIssue false

Cellular aspects of fuel mobilization and selection in white adipocytes

Published online by Cambridge University Press:  28 February 2007

Max Lafontan
Affiliation:
Unité INSERM 317, Institut Louis Bugnard, Faculté de Médecine, Université Paul Sabatier, CHU Rangueil, Bât. L3, 31054 Toulouse Cedex, France
Dominique Langin
Affiliation:
Unité INSERM 317, Institut Louis Bugnard, Faculté de Médecine, Université Paul Sabatier, CHU Rangueil, Bât. L3, 31054 Toulouse Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Meeting Report
Copyright
Copyright © The Nutrition Society 1995

References

Abumrad, N. A., El-Maghrabi, M. R., Amri, E.-Z., Lopez, E. & Grimaldi, P. A. (1993). Cloning of rat adipocyte membrane protein implicated in binding and transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. Journal of Biological Chemistry 268, 1766517668.CrossRefGoogle ScholarPubMed
Abumrad, N. A., Park, J. H. & Park, C. R. (1984). Permeation of long chain fatty acids into adipocytes: kinetics, specificity, and evidence for involvement of a membrane protein. Journal of Biological Chemistry 259, 89458953.CrossRefGoogle Scholar
Abumrad, N., Park, C. R. & Whitesell, R. R. (1986). Catecholamine activation of the membrane transport of long chain fatty acids in adipocytes is mediated by cyclic AMP and protein kinase. Journal of Biological Chemistry 261, 1308213086.CrossRefGoogle ScholarPubMed
Allen, D. O. & Quesenberry, J. T. (1988). Quantitative differences in the cyclic AMP-lipolysis relationships for isoproterenol and forskolin. Journal of Pharmacology and Experimental Therapeutics 244, 852858.Google ScholarPubMed
Amri, E.-Z., Bertrand, B., Ailhaud, G. & Grimaldi, P. (1991). Regulation of adipose cell differentiation: I. Fatty acids are inducers of the aP2 gene expression. Journal of Lipid Research 32, 14491456.CrossRefGoogle ScholarPubMed
Belfrage, P. (1985). Hormonal control of lipid degradation. In New Perspectives in Adipose Tissue: Structure, Function and Development, pp. 121144 [Cryer, A. and Van, R. L. R., editors]. London: Butterworths.CrossRefGoogle Scholar
Bensadoun, A. (1991). Lipoprotein lipase. Annual Review of Nutrition 11, 217237.CrossRefGoogle ScholarPubMed
Berlan, M. & Lafontan, M. (1985). Evidence that epinephrine acts preferentially as an antilipolytic agent in abdominal human subcutaneous fat cells: assessment by analysis of beta- and alpha2-adrenoceptors properties. European Journal of Clinical Investigation 15, 341346.CrossRefGoogle Scholar
Brockman, H. L. (1984). General features of lipolysis: reaction scheme, interfacial structure and experimental approaches. In Lipases, pp. 346 [Borgström, B. and Brockman, H. L., editors]. Amsterdam, The Netherlands: Elsevier.Google Scholar
Bülow, J. (1993). Lipid mobilization and utilization. In Principles of Exercise Biochemistry, Medicine and Sport Science, 2nd ed., pp. 158185 [Poortmans, J. R., editor]. Basel, Switzerland: Karger.CrossRefGoogle Scholar
Catalioto, R.-M., Gaillard, D., Maclouf, J., Ailhaud, G. & Negrel, R. (1991). Autocrine control of adipose cell differentiation by prostacyclin and PGF2alpha. Biochimica et Biophysica Acta 1091, 364369.CrossRefGoogle Scholar
Coppack, S. W., Jensen, M. D. & Miles, J. M. (1994). In vivo regulation of lipolysis in humans. Journal of Lipid Research 35, 177193.CrossRefGoogle ScholarPubMed
Degerman, E., Smith, C. J., Tornqvist, H., Vasta, V., Belfrage, P. & Manganiello, V. C. (1990). Evidence that insulin and isoprenaline activate the cGMP-inhibited low Km cAMP-phosphodiesterase in rat fat cells by phosphorylation. Proceedings of the National Academy of Sciences USA 87, 533537.CrossRefGoogle Scholar
Distel, R. J., Robinson, G. S. & Spiegelman, B. M. (1992). Fatty acid regulation of gene expression. Transcriptional and post-transcriptional mechanisms. Journal of Biological Chemistry 267, 59375941.CrossRefGoogle ScholarPubMed
Edens, N. K., Leibel, R. L. & Hirsch, J. (1990). Mechanisms of free fatty acid re-esterification in human adipocytes in vitro. Journal of Lipid Research 31, 14231431.CrossRefGoogle ScholarPubMed
Egan, J. J., Greenberg, A. S., Chang, M.-K., Wek, S. A., Moos, M. C. Jr & Londos, C. (1992). Mechanism of hormone-stimulated lipolysis in adipocytes: Translocation of hormone-sensitive lipase to the lipid storage droplet. Proceedings of the National Academy of Sciences USA 89, 85378541.CrossRefGoogle Scholar
Enerbäck, S. & Grimble, J. M. (1993). Lipoprotein lipase gene expression: physiological regulators at the transcriptional and post-transcriptional level. Biochimica et Biophysica Acta 1169, 107125.CrossRefGoogle ScholarPubMed
Fain, J. N. & Garcia-Sainz, J. A. (1983). Adrenergic regulation of adipocyte metabolism. Journal of Lipid Research 24, 945966.CrossRefGoogle Scholar
Frayn, K. N., Coppack, S. W. & Potts, J. L. (1992). Effect of diet on human adipose tissue metabolism. Proceedings of the Nutrition Society 51, 409418.CrossRefGoogle Scholar
Fredrikson, G., Tornqvist, H. & Belfrage, P. (1986). Hormone-sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol. Biochimica et Biophysica Acta 876, 288293.CrossRefGoogle ScholarPubMed
Galitzky, J., Reverte, M., Carpene, C., Lafontan, M. & Berlan, M. (1993 a). Beta3-adrenoceptors in dog adipose tissue: studies on their involvement in the lipomobilizing effect of catecholamines. Journal of Pharmacology and Experimental Therapeutics 266, 358366.Google Scholar
Galitzky, J., Reverte, M., Portillo, M., Carpene, C., Lafontan, M. & Berlan, M. (1993 b). Coexistence of functional betal-, beta2- and beta3-adrenoceptors in dog fat cells and their differential activation by catecholamines. American Journal of Physiology 264, E403E412.Google Scholar
Garton, A. J., Campbell, D. G., Carling, D., Hardie, D. G., Colbran, R. J. & Yeaman, S. J. (1989). Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. European Journal of Biochemistry 179, 249254.CrossRefGoogle ScholarPubMed
Garton, A. J. & Yeaman, S. J. (1990). Identification and role of the basal phosphorylation site on hormone-sensitive lipase. European Journal of Biochemistry 191, 245250.CrossRefGoogle Scholar
Gavino, V. C. & Gavino, G. R. (1992). Adipose hormone-sensitive lipase preferentially releases polyunsaturated fatty acids from triglycerides. Lipids 27, 950954.CrossRefGoogle ScholarPubMed
Greenberg, A., Egan, J. J., Wek, S. A., Garty, N. B., Blanchette-Mackie, E. J. & Londos, C. (1991). Perilipin, a major hormonally regulated adipocyte-specific phosphoprotein associated with the periphery of lipid storage droplets. Journal of Biological Chemistry 266, 1134111346.CrossRefGoogle Scholar
Greenberg, A. S., Egan, J. J., Wek, S. A., Moos, M. C. Jr, Londos, C. & Kimmel, A. R. (1993). Isolation of cDNAs for perilipins A and B: sequence and expression of lipid droplet-associated proteins of adipocytes. Proceedings of the National Academy of Sciences USA 90, 1203512039.CrossRefGoogle Scholar
Groscolas, R. (1990). Metabolic adaptations to fasting in emperor and king penguins. In Penguin Biology, pp. 269295 [Davis, L. S. and Darby, J. T., editors]. San Diego, CA: Academic Press.Google Scholar
Hardie, D. G., Carling, D. & Sim, A. T. R. (1989). The AMP-activated protein kinase: a multisubstrate regulator of lipid metabolism. Trends in Biochemical Sciences 14, 2023.CrossRefGoogle Scholar
Hare, J. F., Taylor, K. & Holocher, A. (1994). Energy-dependent protein glycerol interaction in a cell-free system from 3T3-L1 adipocytes. Journal of Biological Chemistry 269, 771776.CrossRefGoogle Scholar
Hausdorff, W. P., Caron, M. G. & Lefkowitz, R. J. (1990). Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB Journal 4, 28812889.CrossRefGoogle ScholarPubMed
Hirsch, A. H. & Rosen, O. M. (1984). Lipolytic stimulation modulates the subcellular distribution of hormone-sensitive lipase in 3T3-L1 cells. Journal of Lipid Research 25, 665677.CrossRefGoogle ScholarPubMed
Hollenga, C., Brouwer, F. & Zaagsma, J. (1991). Relationship between lipolysis and cyclic AMP generation mediated by atypical beta-adrenoceptors. British Journal of Pharmacology 102, 577580.CrossRefGoogle ScholarPubMed
Holm, C., Belfrage, P., Osterlund, T., Davis, R. C., Schotz, M. C. & Langin, D. (1994 a). Hormone-sensitive lipase: structure, function, evolution and overproduction in insect cells using the baculovirus expression system. Protein Engineering 7, 537541.CrossRefGoogle ScholarPubMed
Holm, C., Davis, R. C., Osterlund, T., Schotz, M. C. & Fredrikson, G. (1994 b). Identification of the active site serine of hormone-sensitive lipase by site-directed mutagenesis. FEBS Letters 344, 234238.CrossRefGoogle Scholar
Holm, C., Fredrikson, G. & Belfrage, P. (1986). Demonstration of the amphiphilic character of hormonesensitive lipase by temperature-induced phase separation in Triton X 114 and charge-shift electrophoresis. Journal of Biological Chemistry 261, 1565915661.CrossRefGoogle ScholarPubMed
Holm, C., Kirchgessner, T. G., Svensson, K. L., Fredrikson, G., Nilsson, S., Miller, C. G., Shively, J. E., Heinzemann, C., Sparkes, R. S., Mohandas, T., Lusis, A. J., Belfrage, P. & Schotz, M. C. (1988). Hormone-sensitive lipase: sequence, expression and chromosomal localization to 19 cent q13.3. Science 241, 15031506.CrossRefGoogle ScholarPubMed
Honnor, R. C., Dhillon, G. S. & Londos, C. (1985 a). cAMP-dependent protein kinase and lipolysis in rat adipocytes. I. Cell preparation, manipulation and predictability in behaviour. Journal of Biological Chemistry 260, 1512215129.CrossRefGoogle Scholar
Honnor, R. C., Dhillon, G. S. & Londos, C. (1985 b). cAMP-dependent protein kinase and lipolysis in rat adipocytes. II. Definition of steady-state relationship with lipolytic and antilipolytic modulators. Journal of Biological Chemistry 260, 1513015138.CrossRefGoogle ScholarPubMed
Jedlicka, A. E., Taylor, E. W., Meyers, D. E., Liu, Z. & Levitt, R. C. (1994). Localization of the highly polymorphic locus D19S120 to 19p13.3 by linkage. Cytogenetics and Cell Genetics 65, 140.CrossRefGoogle ScholarPubMed
Jepson, C. A. & Yeaman, S. J. (1992). Inhibition of hormone-sensitive lipase by intermediary lipid metabolites. FEBS Letters 310, 197200.CrossRefGoogle ScholarPubMed
Kawamura, M., Jensen, D. F., Wancewicz, E. V., Joy, L. L., Khoo, J. C. & Steinberg, D. (1981). Hormone-sensitive lipase in differentiated 3T3-L1 cells and its activation by cyclic AMP-dependent protein kinase. Proceedings of the National Academy of Sciences USA 78, 732736.CrossRefGoogle ScholarPubMed
Keller, H. & Wahli, W. (1993). Peroxisome proliferator-activated receptors. A link between endocrinology and nutrition. Trends in Endocrinology and Metabolism 4, 291296.CrossRefGoogle ScholarPubMed
Kraemer, F. B., Tavangar, K. & Hoffmann, A. R. (1991). Developmental regulation of hormone-sensitive lipase mRNA in the rat: changes in steroidogenic tissues. Journal of Lipid Research 32, 13031310.CrossRefGoogle ScholarPubMed
Lafontan, M. & Berlan, M. (1993). Fat cell adrenergic receptors and the control of white and brown fat cell function. Journal of Lipid Research 34, 10571091.CrossRefGoogle ScholarPubMed
Langin, D., Ekholm, D., Ridderstrale, M., Lafontan, M. & Belfrage, P. (1992). cAMP-dependent protein kinase activation mediated by β3-adrenergic receptors parallels lipolysis in rat adipocytes. Biochimica et Biophysica Acta 1135, 349352.CrossRefGoogle Scholar
Langin, D. & Holm, C. (1993). Sequence similarities between hormone-sensitive lipase and five prokaryotic enzymes. Trends in Biochemical Sciences 18, 466467.CrossRefGoogle ScholarPubMed
Langin, D., Laurell, H., Holt, L. S., Belfrage, P. & Holm, C. (1993). Gene organization and primary structure of human hormone-sensitive lipase: possible significance of a sequence homology with a lipase of Moraxella TA144, an antarctic bacterium. Proceedings of the National Academy of Sciences USA 90, 48974901.CrossRefGoogle ScholarPubMed
Leibel, R. L. & Hirsch, J. (1985). A radioisotopic technique for analysis of free fatty acid reesterification in human adipose tissue. American Journal of Physiology 248, E140E147.Google ScholarPubMed
Lillioja, S., Foley, J. E., Bogardus, D., Mott, D. M. & Howard, B. V. (1986). Free fatty acid metabolism and obesity in man: in vivo and in vitro comparisons. Metabolism 35, 505514.CrossRefGoogle ScholarPubMed
Londos, C., Honnor, R. C. & Dhillon, G. S. (1985). cAMP-dependent protein kinase and lipolysis in rat adipocytes. III. Multiple modes of insulin regulation of lipolysis and regulation of insulin responses by adenylate cyclase regulators. Journal of Biological Chemistry 260, 1513915145.CrossRefGoogle Scholar
Manganiello, V. C., Degerman, E., Smith, C. J., Vasta, V., Tornqvist, H. & Belfrage, P. (1992). Mechanisms for activation of the rat adipocyte particulate cyclic-GMP-inhibited cyclic AMP phosphodiesterase and its importance in the antilipolytic action of insulin. In Advances in Second Messenger and Phosphoprotein Research, pp. 147164 [Strada, S. J. and Hidaka, H., editors]. New York: Raven Press Ltd.Google Scholar
Mauriège, P., Galitzky, J., Berlan, M. & Lafontan, M. (1987). Heterogeneous distribution of beta- and alpha2-adrenoceptor binding sites in human fat cells from various fat deposits: functional consequences. European Journal of Clinical Investigation 17, 156165.CrossRefGoogle Scholar
Murphy, G. J., Kirkham, D. M., Cawthorne, M. A. & Young, P. (1993). Correlation of beta3-adrenoceptor-induced activation of cyclic AMP-dependent protein kinase with activation of lipolysis in rat white adipocytes. Biochemical Pharmacology 46, 575581.CrossRefGoogle Scholar
Okuda, H., Morimoto, C. & Tsujita, T. (1992). Relationship between cyclic AMP production and lipolysis induced by forskolin in rat fat cells. Journal of Lipid Research 33, 225231.CrossRefGoogle ScholarPubMed
Olsson, H. & Belfrage, P. (1987). Dephosphorylation of the regulatory phosphorylation site of hormonesensitive lipase in rat adipocytes: Evidence for a dominant role of protein phosphatase-2A. European Journal of Biochemistry 168, 399405.CrossRefGoogle Scholar
Olsson, H., Strålfors, P. & Belfrage, P. (1986). Phosphorylation of the basal site of hormone-sensitive lipase by glycogen synthase kinase-4. FEBS Letters 209, 175180.CrossRefGoogle ScholarPubMed
Potter, B. J., Sorrentino, D. & Berk, P. D. (1989). Mechanisms of cellular uptake of free fatty acids. Annual Review of Nutrition 9, 253270.CrossRefGoogle ScholarPubMed
Raclot, T. & Groscolas, R. (1993). Differential mobilization of white adipose tissue fatty acids according to chain length, unsaturation, and positional isomerism. Journal of Lipid Research 34, 15151526.CrossRefGoogle Scholar
Rascon, A., Degerman, E., Taira, M., Meacci, E., Smith, C. J., Manganiello, V., Belfrage, P. & Tornqvist, H. (1994). Identification of the phosphorylation site in vitro for cAMP-dependent protein kinase on the rat adipocyte cGMP-inhibited cAMP phosphodiesterase. Journal of Biological Chemistry 269, 1196211966.CrossRefGoogle Scholar
Richelsen, B. (1987). Factors regulating the production of prostaglandin E2 and prostacyclin (prostaglandin I2) in rat and human adipocytes. Biochemical Journal 247, 389394.CrossRefGoogle ScholarPubMed
Richelsen, B. (1991). Prostaglandins in adipose tissue. Danish Medical Bulletin 38, 228244.Google ScholarPubMed
Saggerson, E. D. (1985). Hormonal regulation of biosynthetic activities in white adipose tissue. In New Perspectives in Adipose Tissue: Structure, Function and Development, pp. 87120 [Cryer, A. and Van, R. L. R., editors]. London: Butterworths.CrossRefGoogle Scholar
Schonk, D., Dijk, P. V., Riegmann, P., Trapman, J., Holm, C., Willcocks, T. C., Sillekens, P., Venrooij, W. V., Wimmer, E., Kessel, A. G. V., Ropers, H. H. & Wieringa, B. (1990). Assignment of seven genes to distinct intervals on the midportion of human chromosome 19q surrounding the myotonic dystrophy gene region. Cytogenetics and Cell Genetics 54, 1519.CrossRefGoogle Scholar
Scott, J. D. & McCartney, S. (1994). Localization of A-kinase through anchoring proteins. Molecular Endocrinology 8, 511.Google ScholarPubMed
Soma, M., Mims, M. P., Chari, M. V., Rees, D. & Morrisett, J. D. (1992). Triglyceride metabolism in 3T3-L1 cells. An in vivo 13C NMR study. Journal of Biological Chemistry 267, 1116811175.CrossRefGoogle ScholarPubMed
Strålfors, P. & Belfrage, P. (1983). Phosphorylation of hormone-sensitive lipase by cyclic AMP-dependent protein kinase. Journal of Biological Chemistry 258, 1514615152.CrossRefGoogle ScholarPubMed
Strålfors, P. & Belfrage, P. (1985). Phosphorylation of hormone-sensitive lipase by cyclic GMP-dependent protein kinase. FEBS Letters 180, 280284.CrossRefGoogle Scholar
Strålfors, P., Olsson, H. & Belfrage, P. (1987). Hormone-sensitive lipase. In The Enzymes, pp. 147177 [Boyer, P. D. and Krebs, E. G., editors]. New York: Academic Press.Google Scholar
Sztalryd, C. & Kraemer, F. B. (1994 a). Differences in hormone-sensitive lipase expression in white adipose tissue from various anatomic locations of the rat. Metabolism 43, 241247.CrossRefGoogle Scholar
Sztalryd, C. & Kraemer, F. B. (1994 b). Regulation of hormone-sensitive lipase during fasting. American Journal of Physiology 266, E179E185.Google ScholarPubMed
Taira, M., Hockman, S. C., Calvo, J. C., Taira, M., Belfrage, P. & Manganiello, V. C. (1993). Molecular cloning of the rat adipocyte hormone-sensitive cyclic GMP-inhibited cyclic nucleotide phosphodiesterase. Journal of Biological Chemistry 268, 1857318579.CrossRefGoogle Scholar
Thompson, M. P., Cooper, S. T., Parry, B. R. & Tuckey, J. A. (1993). Increased expression of the mRNA for hormone-sensitive lipase in adipose tissue of cancer patients. Biochimica et Biophysica Acta 1180, 236242.CrossRefGoogle ScholarPubMed
Vassaux, G., Gaillard, D., Ailhaud, G. & Négrel, R. (1992). Prostacyclin is a specific effector of adipose cell differentiation. Its dual role as cAMP and Ca2+ elevating agent. Journal of Biological Chemistry 267, 1109211097.CrossRefGoogle ScholarPubMed
Vernon, R. G. & Clegg, R. A. (1985). The metabolism of white adipose tissue in vivo and in vitro. In New Perspectives in Adipose Tissue: Structure, Function and Development, pp. 6586 [Cryer, A. and Van, R. L. R., editors]. London: Butterworths.CrossRefGoogle Scholar
Warden, C. H., Davis, R. C., Yoon, M.-Y., Hui, D. Y., Svenson, K., Xia, Y.-R., Diep, A., He, K.-Y. & Lusis, A. J. (1993). Chromosomal localization of lipolytic enzymes in the mouse: pancreatic lipase, colipase, hormone-sensitive lipase, hepatic lipase and carboxy ester lipase. Journal of Lipid Research 34, 14511455.CrossRefGoogle Scholar
Wesslau, C., Eriksson, J. W. & Smith, U. (1993). Cellular cyclic AMP levels modulate insulin sensitivity and responsiveness. Evidence against a significant role of Gi in insulin signal transduction. Biochemical and Biophysical Research Communications 196, 287293.CrossRefGoogle ScholarPubMed
Wise, L. S. & Jungas, R. L. (1978). Evidence for a dual mechanism of lipolysis activation by epinephrine in rat adipose tissue. Journal of Biological Chemistry 253, 26242627.CrossRefGoogle ScholarPubMed
Wood, S. L., Emmison, N., Borthwick, A. C. & Yeaman, S. J. (1993). The protein phosphatases responsible for dephosphorylation of hormone-sensitive lipase in isolated rat adipocytes. Biochemical Journal 295, 531535.CrossRefGoogle ScholarPubMed
Yeaman, S. J. (1990). Hormone-sensitive lipase – a multiplepurpose enzyme in lipid metabolism. Biochimica et Biophysica Acta 1052, 128132.CrossRefGoogle Scholar