Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T23:57:11.391Z Has data issue: false hasContentIssue false

Toeplitz operators with symbols generated by slowly oscillating and semi-almost periodic matrix functions

Published online by Cambridge University Press:  05 November 2004

M. A. Bastos
Affiliation:
Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049–001 Lisbon, Portugal. E-mail: [email protected]
Yu. I. Karlovich
Affiliation:
Facultad de Ciencias Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, Mexico. E-mail: [email protected]
B. Silbermann
Affiliation:
Fakultät für Mathematik, Technische Universität Chemnitz, 09107 Chemnitz, Germany. E-mail: [email protected]
Get access

Abstract

We develop the Fredholm theory for Toeplitz operators, with symbols in the C*-algebra $D = [SO, SAP]_{n, n}$ generated by all slowly oscillating (SO) and semi-almost periodic (SAP) $n\times n$ matrix functions, on the Hardy spaces $H^p_n$ (with $1 < p < \infty$) over the upper half-plane. Using limit operator techniques, we get necessary Fredholm conditions for any operator in the Banach algebra ${\rm alg}(S, D)$ of singular integral operators with coefficients in $D$ on the space $[L^p (\mathbb{R})]_n$. Applying the Allan–Douglas local principle and the theory of Toeplitz operators with SAP matrix symbols, we also establish Fredholm criteria for Toeplitz operators with matrix symbols $g \in D$ on the space $H^p_n$. An index formula for Fredholm Toeplitz operators with matrix symbols in $D$ is obtained on the basis of an appropriate approximation of slowly oscillating components of the symbols.

Type
Research Article
Copyright
2004 London Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research partially supported by FCT (Portugal) project POCTI/34222/MAT/2000-FEDER and by PROMEP (México).