Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T04:26:18.747Z Has data issue: false hasContentIssue false

SUR LES LOIS LOCALES DE LA RÉPARTITION DU k-IÈME DIVISEUR D'UN ENTIER

Published online by Cambridge University Press:  06 March 2002

RÉGIS DE LA BRETÈCHE
Affiliation:
Département de Mathématiques, Bâtiment 425, Université Paris Sud–Orsay, 91405 Orsay Cedex, [email protected]
GÉRALD TENENBAUM
Affiliation:
Institut Élie Cartan, Université Henri Poincaré Nancy 1, BP 239, 54506 Vandœuvre Cedex, [email protected]
Get access

Abstract

Let $\{d_j(n)\}_{j=1}^{\tau(n)}$ denote the increasing sequence of divisors of an integer $n$, and write $\Lambda_k(d)$ for the natural density of the set of those integers $n$ with $d_k(n)=d$. Answering a question raised by Erd\H os, we show that $\Lambda_k(d)$ attains its maximum for $d=K^{1/2+o(1)}$, where $K:=k^{(\log \log k)/\log 2}$ (which, by a theorem of Ramanujan, is roughly the size of the smallest integer having $k$ divisors). A key step of the proof consists in establishing a sublinearity property of the counting function $\Psi_1(x,y)$ of $y$-friable square-free integers not exceeding $x$. This is achieved via a complete study of $\Psi_1(x,y)$ using the saddle-point method, which, in particular, also enables a precise description of the Gaussian behaviour of this function in certain ranges.

2000 Mathematical Subject Classification: 11N25, 11N37.

Type
Research Article
Copyright
2002 London Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)