Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T11:00:46.051Z Has data issue: false hasContentIssue false

Patterns and minimal dynamics for graph maps

Published online by Cambridge University Press:  23 August 2005

Lluís Alsedà
Affiliation:
Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain. E-mail: [email protected], [email protected]
François Gautero
Affiliation:
Université Blaise Pascal, Clermont-Ferrand II, Campus des Cézeaux, Laboratoire de Mathématiques, 63177 Aubière, France. E-mail: [email protected]
John Guaschi
Affiliation:
Laboratoire de Mathématiques Emile Picard, U.M.R. CNRS 5580, Université Toulouse III, 118 route de Narbonne, 31062 Toulouse Cedex 4, France. E-mail: [email protected]
Jérôme Los
Affiliation:
Université Aix-Marseille I, Centre de Mathématiques et Informatique, 39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France. E-mail: [email protected]
Francesc Mañosas
Affiliation:
Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain. E-mail: [email protected], [email protected]
Pere Mumbrú
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain. E-mail: [email protected]
Get access

Abstract

We study the rigidity problem for periodic orbits of (continuous) graph maps belonging to the same homotopy equivalence class. Since the underlying spaces are not necessarily homeomorphic, we define a new notion of pattern which enables us to compare periodic orbits of self-maps of homotopy-equivalent spaces. This definition unifies the known notions of pattern for other spaces. The two main results of the paper are as follows: given a free group endomorphism, we study the persistence under homotopy of the periodic orbits of its topological representatives, and in the irreducible case, we prove the minimality (within the homotopy class) of the set of periodic orbits of its efficient representatives.

Type
Research Article
Copyright
2005 London Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)