Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Соломяк, Михаил Захарович
and
Solomyak, Mikhail Zakharovich
2004.
О дискретном спектре семейства дифференциальных операторов.
Функциональный анализ и его приложения,
Vol. 38,
Issue. 3,
p.
70.
Guarneri, Italo
2011.
Irreversible behaviour and collapse of wave packets in a quantum system with point interactions.
Journal of Physics A: Mathematical and Theoretical,
Vol. 44,
Issue. 48,
p.
485304.
Exner, Pavel
2014.
A regular analogue of Smilansky model.
PAMM,
Vol. 14,
Issue. 1,
p.
985.
Barseghyan, Diana
and
Exner, Pavel
2014.
A regular version of Smilansky model.
Journal of Mathematical Physics,
Vol. 55,
Issue. 4,
Barseghyan, Diana
Exner, Pavel
Khrabustovskyi, Andrii
and
Tater, Miloš
2016.
Spectral analysis of a class of Schrödinger operators exhibiting a parameter-dependent spectral transition.
Journal of Physics A: Mathematical and Theoretical,
Vol. 49,
Issue. 16,
p.
165302.
Barseghyan, Diana
and
Exner, Pavel
2017.
A magnetic version of the Smilansky–Solomyak model.
Journal of Physics A: Mathematical and Theoretical,
Vol. 50,
Issue. 48,
p.
485203.
Exner, Pavel
Lotoreichik, Vladimir
and
Tater, Miloš
2017.
Spectral and resonance properties of the Smilansky Hamiltonian.
Physics Letters A,
Vol. 381,
Issue. 8,
p.
756.
Barseghyan, Diana
and
Exner, Pavel
2017.
A regular analogue of the Smilansky model: Spectral properties.
Reports on Mathematical Physics,
Vol. 80,
Issue. 2,
p.
177.
Guarneri, Italo
2018.
A model with chaotic scattering and reduction of wave packets.
Journal of Physics A: Mathematical and Theoretical,
Vol. 51,
Issue. 9,
p.
095304.
Exner, Pavel
and
Lipovský, Jiří
2018.
Smilansky–Solomyak model with a δ′-interaction.
Physics Letters A,
Vol. 382,
Issue. 18,
p.
1207.
Exner, Pavel
2020.
Mathematical Modelling, Optimization, Analytic and Numerical Solutions.
p.
13.
Naboko, Sergei Nikolaevich
and
Simonov, Sergey Aleksandrovich
2021.
Формула Вейля-Титчмарша для спектральной плотности класса матриц Якоби в критическом случае.
Функциональный анализ и его приложения,
Vol. 55,
Issue. 2,
p.
21.
Naboko, S. N.
and
Simonov, S. A.
2021.
Titchmarsh–Weyl Formula for the Spectral Density of a Class of Jacobi Matrices in the Critical Case.
Functional Analysis and Its Applications,
Vol. 55,
Issue. 2,
p.
94.
Guarneri, Italo
2022.
A Kronig–Penney model in a quadratic channel with periodic δ-interactions: I. Dynamics.
Journal of Physics A: Mathematical and Theoretical,
Vol. 55,
Issue. 42,
p.
424008.
Smilansky, Uzy
2022.
The Kronig–Penney model in a quadratic channel with δ interactions: II. Scattering approach.
Journal of Physics A: Mathematical and Theoretical,
Vol. 55,
Issue. 42,
p.
424007.
Exner, Pavel
and
Lipovský, Jiří
2023.
From Complex Analysis to Operator Theory: A Panorama.
Vol. 291,
Issue. ,
p.
523.
Kurasov, Pavel
2023.
From Complex Analysis to Operator Theory: A Panorama.
Vol. 291,
Issue. ,
p.
43.