Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T02:56:40.905Z Has data issue: false hasContentIssue false

GROTHENDIECK'S INEQUALITIES FOR REAL AND COMPLEX JBW*-TRIPLES

Published online by Cambridge University Press:  18 October 2001

ANTONIO M. PERALTA
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain, [email protected]@goliat.ugr.es
ANGEL RODRÍGUEZ PALACIOS
Affiliation:
Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain, [email protected]@goliat.ugr.es
Get access

Abstract

We prove that, if $M > 4(1+2\sqrt{3})$ and $\varepsilon > 0$, if $\mathcal{V}$ and $\mathcal{W}$ are complex JBW*-triples (with preduals $\mathcal{V}_{*}$ and $\mathcal{W}_{*}$, respectively), and if $U$ is a separately weak*-continuous bilinear form on $\mathcal{V} \times \mathcal{W}$, then there exist norm-one functionals $\varphi_{1},\varphi_{2}\in \mathcal{V}_{*}$ and $\psi_{1},\psi_{2}\in \mathcal{W}_{*}$ satisfying |U(x,y)| \leq M \,\|U\| ( \|x\|_{\varphi_{2}}^{2} + \varepsilon^{2} \, \|x\|_{\varphi_{1}}^{2} )^{\frac 12} ( \|y\|_{\psi_{2}}^{2} + \varepsilon^{2} \, \|y\|_{\psi_{1}}^{2} )^{\frac 12} for all $(x,y)\in \mathcal{V} \times \mathcal{W}$. Here, for a norm-one functional $\varphi$ on a complex JB*-triple $\mathcal{V}$, $\|\cdot\|_{\varphi}$ stands for the prehilbertian seminorm on $\mathcal{V}$ associated to $\varphi$ given by $\|x\|_{\varphi}^{2} := \varphi \{x,x,z\}$ for all $x\in \mathcal{W}$, where $z\in \mathcal{V}^{**}$ satisfies $\varphi (z) = \|z\|=1$. We arrive at this form of ‘Grothendieck's inequality’ through results of C.-H. Chu, B. Iochum, and G. Loupias, and an amended version of the ‘little Grothendieck's inequality’ for complex JB*-triples due to T. Barton and Y. Friedman. We also obtain extensions of these results to the setting of real JB*-triples. 2000 Mathematical Subject Classification: 17C65, 46K70, 46L05, 46L10, 46L70.

Type
Research Article
Copyright
2001 London Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)