Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T22:24:40.014Z Has data issue: false hasContentIssue false

GLOBAL BRANCH OF SOLUTIONS FOR NON-LINEAR SCHRÖDINGER EQUATIONS WITH DEEPENING POTENTIAL WELL

Published online by Cambridge University Press:  18 April 2006

C. A. STUART
Affiliation:
IACS-FSB, Section de Mathématiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, [email protected]
HUAN-SONG ZHOU
Affiliation:
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, P. R. [email protected]
Get access

Abstract

We consider the stationary non-linear Schrödinger equation\begin{equation*}\Delta u + \{1 + \lambda g(x)\} u = f(u)\mbox{with}u \in H^{1} (\mathbb{R}^{N}), u \not\equiv 0,\end{equation*} where $\lambda >0$ and the functions $f$ and $g$ are such that\begin{equation*} \lim_{s \rightarrow 0}\frac{f(s)}{s} = 0 \mbox{and} 1 < \alpha + 1 = \lim _{|s| \rightarrow \infty}\frac{f(s)}{s} < \infty\end{equation*} and \begin{equation*} g(x)\equiv 0 \mbox{on} \bar{\Omega}, g(x)\in (0, 1] \mbox{on} {\mathbb{R}^{N}} \setminus {\overline{\Omega}} \mbox{and} \lim_{|x| \rightarrow + \infty} g(x) = 1 \end{equation*} for some bounded open set $\Omega \in \mathbb{R}^{N}$. We use topological methods to establish the existence of two connected sets $\mathcal{D}^{\pm}$ of positive/negative solutions in $\mathbb{R} \times W^{2, p} (\mathbb{R}^{N})$ where $p \in [2, \infty) \cap (\frac{N}{2},\infty)$ that cover the interval $(\alpha,\Lambda(\alpha))$ in the sense that \begin{align*} P \mathcal{D}^{\pm} & = (\alpha, \Lambda(\alpha)) \text{where}P(\lambda, u) = \lambda \text{and furthermore,} \\ \lim_{\lambda \rightarrow \Lambda(\alpha)-}\left\Vert u_{\lambda} \right\Vert _{L^{\infty} (\mathbb{R}^{N})} & = \lim_{\lambda \rightarrow \Lambda (\alpha )-} \left\Vert u_{\lambda} \right\Vert _{W^{2, p}(\mathbb{R}^{N})} = \infty \text{ for }(\lambda, u_{\lambda}) \in \mathcal{D}^{\pm}. \end{align*} The number $\Lambda(\alpha)$ is characterized as the unique value of $\lambda$ in the interval $(\alpha, \infty)$ for which the asymptotic linearization has a positive eigenfunction. Our work uses a degree for Fredholm maps of index zero.

Keywords

Type
Research Article
Copyright
2006 London Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)