Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T07:11:40.450Z Has data issue: false hasContentIssue false

Sommes d'exponentielles et entiers sans grand facteurpremier

Published online by Cambridge University Press:  01 July 1998

Get access

Abstract

Let $S(x,y)$ be the set $S(x,y)=\{ 1 \leq n \leq x : P(n)\leq y\}$, where $P(n)$ denotes the largest prime factor of $n$. We study $E_f(x,y;\theta)=\sum_{n\inS(x,y)}f(n)e^{2\pi in\theta}$, where $f$ is a multiplicative function. When $f=1$ and when $f=\mu$, we widen the domain of uniform approximation using the method of Fouvry and Tenenbaum and making explicit the contribution of the Siegel zero.

Soit $S(x,y)$ l'ensemble $S(x,y)=\{ 1 \leq n \leq x : P(n)\leq y\}$, o\`u$P(n)$ d\'esigne le plus grand facteur premier de $n$. Nous étudions $E_f(x,y;\theta)=\sum_{n\in S(x,y)}f(n)e^{2\pi in\theta}$, lorsque $f$ est une fonction multiplicative. Quand $f=1$ et quand $f=\mu$, nous élargissons le domaine d'approximation uniforme enutilisant la méthode d\'eveloppée par Fouvry et Tenenbaum et en explicitant la contribution du zéro de Siegel.

1991 Mathematics Subject Classification: 11N25, 11N99.

Type
Research Article
Copyright
London Mathematical Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)