Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:44:10.236Z Has data issue: false hasContentIssue false

Riesz transforms and harmonic Lip1-capacity in Cantor sets

Published online by Cambridge University Press:  05 November 2004

Joan Mateu
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. E-mail: [email protected]
Xavier Tolsa
Affiliation:
Institució Catalana de Recerca i Estudis Avançats (ICREA) and Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain. E-mail: [email protected]
Get access

Abstract

We estimate the $L^2$-norm of the $s$-dimensional Riesz transforms on some Cantor sets in ${\mathbb R}^d$. Towards this end, we show that the Riesz transforms truncated at different scales behave in a quasiorthogonal way. As an application, we obtain some precise numerical estimates for the Lipschitz harmonic capacity of these sets.

Type
Research Article
Copyright
2004 London Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors were partially supported by grants BFM2000-0361, MTM2004-00519, HPRN-2000-0116, and 2001-SGR-00431. X. Tolsa was also supported by the program Ramón y Cajal, MCYT (Spain).