Article contents
DIFFERENTIAL FORMS ON FREE AND ALMOST FREE DIVISORS
Published online by Cambridge University Press: 03 November 2000
Abstract
We introduce a variant of the usual K\"{a}hler forms on singular free divisors, and show that it enjoys the same depth properties as K\"{a}hler forms on isolated hypersurface singularities. Using these forms it is possible to describe analytically the vanishing cohomology, and the Gauss--Manin connection, in families of free divisors, in precise analogy with the classical description for the Milnor fibration of an isolated complete intersection singularity, due to Brieskorn and Greuel. This applies in particular to the family $\{D(f_\lambda)\}_{\lambda\in \Lambda}$ of discriminants of a versal deformation $\{f_\lambda\}_{\lambda\in\Lambda}$ of a singularity of a mapping. 1991 Mathematics Subject Classification: 14B07, 14D05, 32S40.
Keywords
- Type
- Research Article
- Information
- Proceedings of the London Mathematical Society , Volume 81 , Issue 3 , November 2000 , pp. 587 - 617
- Copyright
- 2000 London Mathematical Society
- 7
- Cited by