Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T19:48:48.812Z Has data issue: false hasContentIssue false

Understanding the Initial Requirements Definition in Early Design Phases

Published online by Cambridge University Press:  26 July 2019

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The definition of initial requirements in the early phase of product development is characterised as a decision process under highest uncertainties. Studies show that projects often deviate from their planned goals or even fail due to ill-defined requirements. Despite the importance and criticality of this task, a detailed description and risk-oriented explanation is missing in the product development literature. The goal of this paper is to develop an explanation model/frame which establishes a link between the development context and an appropriate procedure for the initial requirements definition based on general risk treatment strategies. In a first step, risk-driving context factors with high influence on this task are identified. Then two case studies are compared to analyse the interrelations between their context factors and the applied risk treatment strategies that are implemented in their procedures for defining initial requirements.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Ahrens, G. (2000), Das Erfassen und Handhaben von Produktanforderungen, PhD thesis, TU Berlin.Google Scholar
Albers, A., Ebel, B. and Lohmeyer, Q. (2012), “Systems of objectives in complex product development”, Ninth International Symposium on Tools and Methods of Competitive Engineering, TMCE.Google Scholar
Albers, A., Bursac, N. and Wintergerst, E. (2015), “Product generation development - importance and challenges from a design research perspective”, New developments in mechanics and mechanical engineering, pp. 1621.Google Scholar
Albers, A., Radimersky, A. and Ott, S. (2016), “Systematic definition of objectives for battery systems considering the interdependencies in electric vehicles”, AIMS ENERGY, Vol. 4 No. 5, pp. 723741.Google Scholar
Badke-Schaub, P. and Frankenberger, E. (2004), Management Kritischer Situationen, VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18702-5_5Google Scholar
Blessing, L. and Chakrabarti, A. (2009), DRM. A Design Research Methodology, Springer-Verlag, London. https://doi.org/10.1007/978-1-84882-587-1Google Scholar
Brandenburg, F. and Spielberg, D. (1998), “Implementing New Ideas into R&D-Strategies - Innovation Management for the Automotive Industry”, 31st ISATA, Advanced Manufacturing in the Automotive Industry, Düsseldorf.Google Scholar
Browning, T.R. (1998), Modeling and Analyzing Cost, Schedule and Performance in Complex System Product Development, PhD Thesis, Massachusetts Institute of Technology.Google Scholar
Bullinger, H.-J., Fähnrich, K.-P. and Meiren, T. (2003), “Service engineering—methodical development of new service products”, International Journal of Production Economics, Vol. 85 No. 3, pp. 275287. https://doi.org/10.1016/s0925-5273(03)00116-6Google Scholar
Chakrabarti, A., Morgenstern, S. and Knaab, H. (2004), “Identification and application of requirements and their impact on the design process: a protocol study”, Research in engineering design, Vol. 15 No. 1, pp. 2239.Google Scholar
Cooper, R.G. (2002), Top oder Flop in der Produktentwicklung. Erfolgsstrategien: Von der Idee zum Launch, Wiley-VCH Verlag, Weinheim.Google Scholar
Cross, N. (2000), Engineering Design Methods. Strategies for Product Design, 3rd edition, John Wiley & Sons, Chichester.Google Scholar
de Weck, O., Eckert, C. and Clarkson, J.P. (2007), “A classification of uncertainty for early product and system design”, Proceedings of the International Conference on Engineering Design 2007 (ICED), Paris.Google Scholar
Eckert, C.M., Alink, T. and Albers, A. (2010), “Issue driven analysis of an existing product at different levels of abstraction”, Proceedings of the International DESIGN Conference, Dubrovnik.Google Scholar
Engel, C., Tamdijdi, A. and Quadejacob, N. (2008), “Ergebnisse der Projektmanagement Studie 2008 - Erfolg und Scheitern im Projektmanagment. Gemeinsame Studie der GPM Deutsche Gesellschaft für Projektmanagement e.V. und PA Consulting Group”.Google Scholar
Ericson, A. and Kastensson, A. (2011), “Exploit and Explore: Two Ways of Categorizing Innovation Projects”, Proceedings of the International Conference on Engineering Design 2011, Copenhagen.Google Scholar
Feldhusen, J. and Grote, K.-H. (2013), Pahl/Beitz Konstruktionslehre. Methoden und Anwendung erfolgreicher Produktentwicklung, Springer-Verlag, Berlin, Heidelberg. http://doi.org/10.1007/978-3-642-29569-0Google Scholar
Gericke, K. (2011), Enhancing Project Robustness: A Risk Management Perspective, PhD thesis, Berlin.Google Scholar
Gericke, K., Meißner, M. and Paetzold, K. (2013), “Understanding the context of product development”, Proceedings of the International Conference on Engineering Design, ICED 2013, Seoul.Google Scholar
Hansen, C.T. and Andreasen, M.M. (2007), “Specifications in early conceptual design work”, 16th International Conference on Engineering Design, Ecole Central Paris & The Design Society, pp. 112.Google Scholar
Hastings, D. and McManus, H. (2006), “A Framework for Understanding Uncertainty and its Mitigation and Exploitation in Complex Systems”, IEEE Engineering Management Review, Vol. 34 No. 3, pp. 8181.Google Scholar
Ehrlenspiel, K. and Meerkamm, H. (2017), Integrierte produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 6th edition, Carl Hanser Verlag GmbH Co KG.Google Scholar
Eiletz, R. (1999), Zielkonfliktmanagement bei der Entwicklung komplexer Produkte – am Beispiel PKW Entwicklung, PhD thesis, TU München, Shaker Verlag, Aachen.Google Scholar
Jakoby, W. (2015), Projektmanagement für Ingenieure. Ein praxisnahes Lehrbuch für den systematischen Projekterfolg, Springer Fachmedien Wiesbaden, 3. Aufl. Wiesbaden.Google Scholar
Jarratt, T., Eckert, C., Caldwell, N.H.M. and Clarkson, P.J. (2011), “Engineering Change: an overview and perspective on the literature”, Research Engineering Design, Vol. 22, pp. 103124.Google Scholar
Kendrick, T. (2015), Identifying and managing project risk: Essential tools for failure-proofing your project, 3rd ed., Amacom American Management Association.Google Scholar
Maffin, D. (1998), “Engineering Design Models: context, theory and practice”, Journal of Engineering Design, Vol. 9 No. 4, pp. 315327.Google Scholar
Meißner, M., Gericke, K. and Gries, B. (2005), “Eine adaptive Produktentwicklungsmethodik als Beitrag zur Prozessgestaltung in der Produktentwicklung”, In: Meerkamm, H. (Ed.), Design for X, Neukrichen, pp. 6777.Google Scholar
Muschik, S. (2011), Development of Systems of Objectives in Early Product Engineering - Entwicklung von Zielsystemen in der frühen Produktentstehung, PhD thesis, Karlsruher Institut für Technologie.Google Scholar
Neumann, M. (2017), Ein modellbasierter Ansatz zur risikoorientierten Entwicklung innovativer Produkte, PhD thesis, Ruhr-Universität Bochum.Google Scholar
Neumann, M. and Bender, B. (2016), “Risk-oriented development of innovative products: a model-based approach”, Proceedings of NordDesign, pp. 350359.Google Scholar
Nidamarthi, S., Chakrabarti, A. and Bligh, T.P. (1997), “The significance of co-evolving requirements and solutions in the design process”, Proceedings of the International Conference on Engineering Design (ICED97), Tampere, 1, pp. 227230.Google Scholar
Oehmen, J., Ben-Daya, M., Seering, W. and Al-Salamah, M. (2010), “Risk management in product design: Current state, conceptual model and future research”, ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 10331041.Google Scholar
Oehmen (2016), “Risiko- und Chancenmanagement in der Produktentwicklung”, In: Lindemann, U. (Ed.), Handbuch Produktentwicklung, Carl Hanser Verlag GmbH Co KG.Google Scholar
Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.-H. (2007), Engineering design: A systematic approach, 3rd ed., Springer Science & Business Media, London.Google Scholar
Patzak, G. and Rattay, G. (2018), Projektmanagement: Leitfaden zum Management von Projekten, Projektportfolios, Programmen und projektorientierten Unternehmen, 7th, ed., Linde Verlag GmbH.Google Scholar
Porter, M.E. (1997), “Competitive Strategy”, Measuring Business Excellence, Vol. 1 No. 2, pp. 1217. https://doi.org/10.1108/eb025476Google Scholar
Reymen, I. (2001), Improving design processes through structured reflection: A domain-independent approach, Technische Universiteit Eindhoven.Google Scholar
Rietiker, S., Scheurer, S. and Wald, A. (2013), “Mal andersrum gefragt: Ergebnisse einer Studie zu Misserfolgsfaktoren in der Projektarbeit”, Projekt Management, Vol. 2013 No. 4, pp. 3339.Google Scholar
Salado, A. and Nilchiani, R. (2016), “The concept of order of conflict in requirements engineering”, IEEE Systems Journal, Vol. 10 No. 1, pp. 2535. http://doi.org/10.1109/JSYST.2014.2315597Google Scholar
Smith, P.G. and Merritt, G.M. (2002), Proactive Risk Management – Controlling Uncertainty in Product Development, Productivity Press, New York, USA.Google Scholar
Song, Y.-W., Windheim, M. and Bender, B. (2018), “Challenges in the definition and prioritisation of requirements: A case study”, DS92: Proceedings of the DESIGN 2018 15th International Design Conference, pp. 13371344.Google Scholar
Stockstrom, C. and Herstatt, C. (2002), “Planning and uncertainty in new product development”, R&D Management, Vol. 38 No. 2002, pp. 480490. http://doi.org/10.1111/j.1467-9310.2008.00532.xGoogle Scholar
Sudin, M.N. and Ahmed-Kristensen, S. (2011), “Change in requirements during the design process”, DS 68-10: Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering Design, Vol. 10: Design Methods and Tools pt. 2, Lyngby/Copenhagen, Denmark.Google Scholar
Ulrich, K.T. and Eppinger, S. (1995), Product Design and Development, McGraw-Hill Inc., Singapore.Google Scholar
Vajna, S. (2014), Integrated Design Engineering. Ein interdisziplinäres Modell für die ganzheitliche Produktentwicklung, Springer Vieweg. http://doi.org/10.1007/978-3-642-41104-5Google Scholar
VDI 2221 (2018), “Blatt 2”, Entwicklung technischer Produkte und Systeme - Gestaltung individueller Produktentwicklungsprozesse, Beuth Verlag, Berlin.Google Scholar
Winkler, H. and Slamanig, M. (2009), “Generische und hybride Wettbewerbsstrategien im Überblick”. WiSt-Wirtschaftswissenschaftliches Studium, Vol. 38 No. 11, pp. 546552.Google Scholar
Wyatt, D.F., Eckert, C.M. and Clarkson, P.J. (2009), “Design of product architectures in incrementally developed complex products”, Proceedings of International Conference on Engineering Design ICED'09.Google Scholar