Article contents
Hybrid Additive Manufacturing - Requirements Engineering Framework for Process Chain Considerations
Published online by Cambridge University Press: 26 July 2019
Abstract
Additive Manufacturing (AM) provides significant opportunities for design and functional integration of parts and assemblies. Compared to conventional processes, the AM principle increases design freedom notably. Additionally, numerous processible materials and hybrid processes enable the implementation in different industries, spanning from aerospace over automobile until medical applications.
However, there are still handicaps to be addressed, arising from the large diversity of AM principles, post-processing and quality assurance issues, partly insufficient user knowledge, and organizational aspects. Coherently, lacking requirements specification hinders a successful consideration of AM in the early stages of development, and its later implementation.
To promote knowledge build-up, this contribution presents a requirements specification framework, which supports developers in determining demands throughout the development process, including those resulting from post-processing and testing operations. By incorporating thorough analyses of general organizational and resort overarching limitations, this contribution promotes a successful implementation of suitable AM strategies.
- Type
- Article
- Information
- Proceedings of the Design Society: International Conference on Engineering Design , Volume 1 , Issue 1 , July 2019 , pp. 3651 - 3660
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
- Copyright
- © The Author(s) 2019
References
- 2
- Cited by