Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T18:39:39.575Z Has data issue: false hasContentIssue false

Young stellar objects close to Sgr A*

Published online by Cambridge University Press:  22 May 2014

B. Jalali
Affiliation:
I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany email: [email protected]
F. I. Pelupessy
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Netherlands
A. Eckart
Affiliation:
I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany email: [email protected] Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
S. Portegies Zwart
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Netherlands
N. Sabha
Affiliation:
I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany email: [email protected] Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
A. Borkar
Affiliation:
I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany email: [email protected] Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
J. Moultaka
Affiliation:
Université de Toulouse; UPS-OMP; IRAP; Toulouse, France CNRS; IRAP; 14, avenue Edouard Belin, F-31400 Toulouse, France
K. Mužić
Affiliation:
ESO, Alonso de Cordova 3107, Vitacura, Casilla 19, Santiago, 19001, Chile
L. Moser
Affiliation:
I. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We aim at modeling small groups of young stars such as IRS 13N, 0.1 pc away from Sgr A*, which is suggested to contain a few embedded massive young stellar objects. We perform hydrodynamical simulations to follow the evolution of molecular clumps orbiting around a 4 × 106 M black hole, to constrain the formation and the physical conditions of such groups.

We find that the strong compression due to the black hole along the orbital radius vector of clumps evolving on highly eccentric orbits causes the clumps densities to increase to higher than the tidal density of Sgr A* and required for star formation. This suggests that the tidal compression from the black hole could support star formation.

Additionally, we speculate that the infrared excess source G2/DSO approaching Sgr A* on a highly eccentric orbit could be associated with a dust enshrouded star that may have been formed recently through the mechanism supported by our models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Eckart, A.et al. 2004, ApJ 602, 760CrossRefGoogle Scholar
Muzic, K.et al. 2008, A&A 482, 173Google Scholar
Eckart, A.et al. 2013, A&A 551, 18Google Scholar
Gillessen, S.et al. 2012, Nature 481, 51CrossRefGoogle Scholar
Pelupessy, I.et al. 2004, A&A 422, 55Google Scholar
Portegies Zwart, S.et al. 2013, CoPhC 183, 456Google Scholar