Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T22:37:52.475Z Has data issue: false hasContentIssue false

Young radio sources at high-energies and the γ-ray CSO PKS 1718–649

Published online by Cambridge University Press:  07 April 2020

Giulia Migliori*
Affiliation:
DIFA, Dipartimento di Fisica e Astronomia, Alma Mater Studiorum, Università degli Studi di Bologna, Via Gobetti 93/2, 40129 Bologna, Italy IRA, INAF Istituto di Radioastronomia, via Gobetti 101, 40129 Bologna, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Observations at high-energies are important to define the first stages of the evolution of extragalactic radio sources and to characterize the interstellar medium of their host galaxies. In some of the X-ray-observed Compact Symmetric Objects (CSOs, among the youngest and most compact radio galaxies), we measured values of the total hydrogen column densities large enough to slow or prevent the radio source growth. The γ-ray window has the potential to constrain the non-thermal contribution of jets and lobes to the total high-energy emission. However, so far, young radio sources remain elusive in γ-rays, with only a handful of detections (or candidates) reported by Fermi. I present our γ-ray study of the CSO PKS 1718–649, and draw comparison with the restarted, γ-ray detected, radio galaxy 3C 84.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Abdo, A. A., et al. 2009, ApJ, 699, 31CrossRefGoogle Scholar
Abdo, A. A., et al. 2010a, ApJ, 720, 912CrossRefGoogle Scholar
Abdo, A. A., et al. 2010b, Science, 328, 725Google Scholar
Acero, F., et al. 2015, ApJS, 218, 23CrossRefGoogle Scholar
Aleksi, J., et al. 2014, A&A, 564, A5Google Scholar
Bicknell, G. V., et al. 2018, MNRAS, 475, 3493CrossRefGoogle Scholar
D’Ammando, F., et al. 2016, AN, 337, 59Google Scholar
Giovannini, G., et al. 2018, Nature Astronomy, 2, 472CrossRefGoogle Scholar
Giroletti, M., & Polatidis, A. 2009, AN, 330, 193Google Scholar
Heinz, S., et al. 1998, ApJ, 501, 126CrossRefGoogle Scholar
Hodgson, J. A., et al. 2018, MNRAS, 475, 368CrossRefGoogle Scholar
Kino, M., et al. 2009, MNRAS, 395, L43CrossRefGoogle Scholar
Maccagni, F. M., et al. 2014, A&A, 571, A67Google Scholar
Migliori, G., et al. 2014, ApJ, 780, 165CrossRefGoogle Scholar
Migliori, G., 2016, AN, 337, 52Google Scholar
Migliori, G., et al. 2016, ApJL, 821, L31CrossRefGoogle Scholar
Müller, C., et al. 2015, A&A, 574, A117Google Scholar
Nagai, H., et al. 2010, PASJ, 62, L11CrossRefGoogle Scholar
Orienti, M. 2016, AN, 337, 9Google Scholar
Ostorero, L., et al. 2017, ApJ, 849, 34CrossRefGoogle Scholar
Siemiginowska, A., et al. 2016, ApJ, 823, 57CrossRefGoogle Scholar
Sobolewska, M., et al. 2019 ApJ, 871, 71CrossRefGoogle Scholar
Stawarz, Ł., et al. 2008, ApJ, 680, 911CrossRefGoogle Scholar
Tanada, K., et al. 2018, ApJ, 860, 74CrossRefGoogle Scholar
Tengstrand, O., et al. 2009, A&A, 501, 89Google Scholar
Tingay, S. J., et al. 1997, AJ, 113, 2025CrossRefGoogle Scholar
Tingay, S. J., et al. 2015, AJ, 149, 74CrossRefGoogle Scholar