Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-29T22:11:45.368Z Has data issue: false hasContentIssue false

Young, old, massive: Steps to understanding globular cluster formation

Published online by Cambridge University Press:  11 March 2020

William E. Harris*
Affiliation:
McMaster University, HamiltonONL8P 2X7, Canada email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

On observational grounds we now know a huge amount about the characteristics of massive star clusters in galaxies of all types, from the smallest dwarfs to the most massive giants and even into the Intracluster Medium. The old globular clusters (GCs) in particular exhibit a high degree of uniformity across all these environments in their physical properties including scale size, luminosity distribution, metallicity distribution, and age. As survivors of a long period of dynamical evolution, they are “unusual, but not special” among star clusters.

The past few years have seen major advances in theoretical modelling that are starting to reveal how these massive star clusters formed in the early stages of galaxy evolution. Several suites of models point to their emergence in GMCs (Giant Molecular Clouds), which provide the turbulent big reservoirs of gas within which star clusters can be built. At cluster masses ∼105M and above, clusters form hierarchically through a nearly equal combination of direct gas accretion, and mergers with smaller clusters scattered throughout the GMC. GCs and YMCs (young massive clusters) in this high mass range should therefore be composite systems right from birth. To make such high-mass clusters, host GMCs of ∼107M are needed, and these are most commonly found in galaxies at redshifts z ≳ 2.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bastian, N. & Lardo, C. 2018, ARAA, 56, 83CrossRefGoogle Scholar
Blakeslee, J. P. 1997, ApJ, 481, L59CrossRefGoogle Scholar
Chiou, Y. S., Naoz, S., Burkhart, B., Marinacci, F., & Vogelsberger, M. 2019, ApJ, 878, 23CrossRefGoogle Scholar
Choksi, N. & Gnedin, O. Y. 2019, MNRAS, 486, 331CrossRefGoogle Scholar
Choksi, N., Gnedin, O. Y., & Li, H. 2018, MNRAS, 480, 2343CrossRefGoogle Scholar
Choksi, N. & Gnedin, O. Y. 2019, arXiv:1905.05199Google Scholar
Cohen, D. P., Turner, J. L., Consiglio, S. M., Martin, E. C., & Beck, S. C. 2018, ApJ, 860, 47CrossRefGoogle Scholar
El-Badry, K., Quataert, E., Weisz, D. R., Choksi, N., & Boylan-Kolchin, M. 2019, MNRAS, 482, 4528CrossRefGoogle Scholar
Fall, S. M. & Rees, M. J. 1985, ApJ, 298, 18CrossRefGoogle Scholar
Finn, M. K.et al. 2019, ApJ, 874, 120CrossRefGoogle Scholar
Forbes, D. A., Read, J. I., Geiles, M., & Collins, M. L. M. 2018, MNRAS, 481, 5592CrossRefGoogle Scholar
Gavagnin, E., Bleuler, A., Rosdahl, J., & Teyssier, R. 2017, MNRAS, 472, 4155CrossRefGoogle Scholar
Grudić, M.et al. 2018a, MNRAS, 481, 688CrossRefGoogle Scholar
Grudić, M.et al. 2018b, MNRAS (arXiv:1809.08348)Google Scholar
Harris, W. E. 2009, ApJ, 703, 939CrossRefGoogle Scholar
Harris, W. E.et al. 2006, ApJ, 636, 90CrossRefGoogle Scholar
Harris, W. E.et al. 2014, ApJ, 797, 128CrossRefGoogle Scholar
Harris, W. E., Blakeslee, J. P., Whitmore, B. C., Gnedin, O. Y., Geisler, D., & Rothberg, B. 2016, ApJ, 817, 58CrossRefGoogle Scholar
Harris, W.E., Blakeslee, J.P., & Harris, G.L.H. 2017, ApJ, 836, 67CrossRefGoogle Scholar
Harris, W. E.et al. 2017b, ApJ, 835, 101CrossRefGoogle Scholar
Harris, W. E. & Pudritz, R. E. 1994, ApJ, 429, 177CrossRefGoogle Scholar
Harris, W. E., Spitler, L., Forbes, D. A., & Bailin, J. 2010, MNRAS, 401, 1965CrossRefGoogle Scholar
Howard, C. S., Pudritz, R. E., & Harris, W. E. 2017, MNRAS, 470, 3346CrossRefGoogle Scholar
Howard, C. S., Pudritz, R. E., & Harris, W. E. 2018, NatAst, 2, 725Google Scholar
Howard, C. S., Pudritz, R. E., Sills, A., & Harris, W. E. 2019, MNRAS, 486, 1146CrossRefGoogle Scholar
Hughes, M. E., Pfeffer, J., Martig, M., Crain, R. A., Kruijssen, J. M. D., & Reina-Campos, M. 2019, MNRAS, 482, 2795CrossRefGoogle Scholar
Jordán, A.et al. 2005, ApJ, 634, 1002CrossRefGoogle Scholar
Kim, J.-H.et al. 2018, MNRAS, 474, 4232CrossRefGoogle Scholar
Kravtsov, A. V. & Gnedin, O. Y. 2005, ApJ, 623, 650CrossRefGoogle Scholar
Kruijssen, J. M. D. 2019, MNRAS, 486, L20CrossRefGoogle Scholar
Leroy, A. K.et al. 2018, ApJ, 869, 126CrossRefGoogle Scholar
Li, H, Vogelsberger, M., Marinacci, F., & Gnedin, O. Y. 2019, MNRAS, 487, 364CrossRefGoogle Scholar
Mieske, S.et al. 2006, ApJ, 653, 193CrossRefGoogle Scholar
Milone, A. P.et al. 2018, MNRAS, 481, 5098CrossRefGoogle Scholar
Moore, B., Diemand, J., Madau, P., Zemp, M., & Stadel, J. 2006, MNRAS, 368, 563CrossRefGoogle Scholar
Murray, S. D. & Lin, D. N. C. 1992, ApJ, 401, 265CrossRefGoogle Scholar
Peebles, P. J. E. & Dicke, R. H. 1968, ApJ, 154, 891CrossRefGoogle Scholar
Pfeffer, J., Kruijssen, J. M. D., Crain, R. A., & Bastian, N. 2018, MNRAS, 475, 4309CrossRefGoogle Scholar
Portegies-Zwart, S., MvMillan, S. L. W., & Gieles, M. 2010, ARAA, 48, 431CrossRefGoogle Scholar
Reina-Campos, M., Kruijssen, J. M. D., Pfeffer, J. L., Bastian, N., & Crain, R. A. 2019, MNRAS, 486, 5838CrossRefGoogle Scholar
Spitler, L. R. & Forbes, D. A. 2009, MNRAS, 392, L1CrossRefGoogle Scholar
Strader, J., Brodie, J. P., Spitler, L., & Beasley, M. A. 2006, AJ, 132, 2333CrossRefGoogle Scholar
Turner, J. L., Beck, S. C., Benford, D. J., Kovács, A., Meier, D. S., & Zhao, J.-H. 2015, Nature, 519, 331CrossRefGoogle Scholar
Turner, J. L., Consiglio, S. M., Beck, S. C., Ho, P. T., Meier, D. S., Silich, S., & Zhao, J.-H. 2017, ApJ, 846, 73CrossRefGoogle Scholar
Usher, C., Pfeffer, J., Kruijssen, J. M. D., Bastian, N., Crain, R., & Reina-Campos, M. 2018, MNRAS, 480, 3279CrossRefGoogle Scholar
Villegas, D.et al. 2010, ApJ, 717, 603CrossRefGoogle Scholar