Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T19:50:29.614Z Has data issue: false hasContentIssue false

Young massive clusters in Arp 299

Published online by Cambridge University Press:  11 March 2020

Zara Randriamanakoto
Affiliation:
South African Astronomical Observatory PO Box 9, 7935 Observatory, Cape Town, Souh Africa email: [email protected]
Petri Väisänen
Affiliation:
South African Astronomical Observatory PO Box 9, 7935 Observatory, Cape Town, Souh Africa email: [email protected] Southern African Large Telescope PO Box 9, 7935 Observatory, Cape Town, Souh Africa email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Because of their young ages and compact densities, young massive star clusters (YMCs) are widely considered as potential proto-globular clusters. They are ubiquitous in environments with ongoing star formation activity such as interacting luminous infrared galaxies. To determine the galactic environmental effects on the star cluster formation and evolution, we study the YMC population of Arp 299 (NGC 3690E/NGC 3690W) using data taken with the HST WFC3/UVIS camera. By fitting the multiband photometry with the Yggdrasil models, we derive the star cluster masses, ages and extinction. While the cluster mass-galactocentric radius relation of NGC 3690E indicates that there could be an influence of the gas density distribution on the cluster formation, the age distribution of the western component suggests that YMCs in that galaxy endure stronger disruption mechanisms. With a cluster formation efficiency of 19 percent, star formation happening in bound clusters in Arp 299 is 3–5 times higher than that of a typical normal spiral.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Adamo, A., Kruijssen, J. M. D., Bastian, N., et al. 2015, MNRAS, 452, 246CrossRefGoogle Scholar
Adamo, A., Östlin, G., & Zackrisson, E. 2011, MNRAS, 417, 1904CrossRefGoogle Scholar
Alonso-Herrero, A., Rieke, G. H., Colina, L., et al. 2009, ApJ, 697, 660CrossRefGoogle Scholar
Alonso-Herrero, A., Rieke, G. H., Rieke, M. J., et al. 2000, ApJ, 532, 845CrossRefGoogle Scholar
Alonso-Herrero, A., Rieke, G. H., Rieke, M. J., et al. 2002, AJ, 124, 166CrossRefGoogle Scholar
Bastian, N., Adamo, A., Gieles, M., et al. 2012, MNRAS, 419, 2606CrossRefGoogle Scholar
Chandar, R., Fall, S. M., & Whitmore, B. C. 2015, ApJ, 810, 1CrossRefGoogle Scholar
Goddard, Q. E., Bastian, N., & Kennicutt, R. C. 2010, MNRAS, 405, 857Google Scholar
Herrero-Illana, R., Pérez-Torres, M. Á., Randriamanakoto, Z., et al. 2017, MNRAS, 471, 1634CrossRefGoogle Scholar
Kool, E. C., Ryder, S., Kankare, E., et al. 2018, MNRAS, 473, 5641CrossRefGoogle Scholar
Kruijssen, J. M. D. 2012, MNRAS, 426, 3008CrossRefGoogle Scholar
Larsen, S. S. 2009, A&A, 494, 539Google Scholar
Larson, K. L., Sanders, D. B., Barnes, J. E., et al. 2016, ApJ, 825, 128CrossRefGoogle Scholar
Messa, M., Adamo, A., Calzetti, D., et al. 2018, MNRAS, 477, 1683CrossRefGoogle Scholar
Portegies Zwart, S. F., McMillan, S. L. W., & Gieles, M. 2010, ARA&A, 48, 431CrossRefGoogle Scholar
Randriamanakoto, Z. 2015, Ph.D. ThesisGoogle Scholar
Randriamanakoto, Z., Escala, A., Väisänen, P., et al. 2013a, ApJL, 775, L38CrossRefGoogle Scholar
Randriamanakoto, Z., Väisänen, P., Ryder, S., et al. 2013b, MNRAS, 431, 554CrossRefGoogle Scholar
Randriamanakoto, Z., Väisänen, P., Ryder, S. D., Ranaivomanana, P. 2019, MNRAS, 482, 2530CrossRefGoogle Scholar
Ryon, J. E., Adamo, A., Bastian, N., et al. 2014, AJ, 148, 33CrossRefGoogle Scholar
Silva-Villa, E. & Larsen, S. S. 2011, A&A, 529, A25Google Scholar
Zackrisson, E., Rydberg, C.-E., Schaerer, D., et al. 2011, ApJ, 740, 13CrossRefGoogle Scholar