Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T19:33:34.989Z Has data issue: false hasContentIssue false

X-rays, γ-rays and neutrinos from collisionless shocks in supernova wind breakouts

Published online by Cambridge University Press:  05 September 2012

Boaz Katz
Affiliation:
Institute for Advanced Study, Princeton, NJ 08540, USA email: [email protected]
Nir Sapir
Affiliation:
Dept. of Particle Phys. & Astrophys., Weizmann Institute of Science, Rehovot 76100, Israel email: [email protected] email: [email protected]
Eli Waxman
Affiliation:
Dept. of Particle Phys. & Astrophys., Weizmann Institute of Science, Rehovot 76100, Israel email: [email protected] email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some of the observed bursts of X-rays/Gamma-rays associated with supernovae (SNe) as well as very luminous SNe may result from the breakout of the SN shock from an optically thick wind surrounding the progenitor. We show that in such scenarios a collisionless shock necessarily forms during the shock breakout. An intense non-thermal flash of ≲1 MeV gamma rays, hard X-rays and multi-TeV neutrinos is produced simultaneously with and following the typical soft X-ray breakout emission, carrying similar or larger energy than the soft emission. The non-thermal flash is detectable by current X-ray telescopes and may be detectable out to 10's of Mpc by km-scale neutrino telescopes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Balberg, S. & Loeb, A. 2011, MNRAS, 478Google Scholar
Burrows, D. N., et al. 2005, Space Sc. Revs, 121, 165CrossRefGoogle Scholar
Campana, S., et al. 2006, Nature, 442, 1008CrossRefGoogle Scholar
Chevalier, R. A. & Irwin, C. M. 2011, ApJ, 729, L6CrossRefGoogle Scholar
Chevalier, R. A. & Irwin, C. M. 2012, ApJ (Letters), 747, L17CrossRefGoogle Scholar
Colgate, S. A. 1974, ApJ, 187, 321CrossRefGoogle Scholar
Ensman, L. & Burrows, A. 1992, ApJ, 393, 742CrossRefGoogle Scholar
Epstein, R. I. 1981, ApJ, 244, L89CrossRefGoogle Scholar
Falk, S. W. 1978, ApJ, 225, L133CrossRefGoogle Scholar
Fan, Y.-Z., Zhang, B.-B., Xu, D., Liang, E.-W., & Zhang, B. 2011, ApJ, 726, 32CrossRefGoogle Scholar
Galama, T. J., Vreeswijk, P. M., van Paradijs, J., et al. 1998, Nature, 395, 670CrossRefGoogle Scholar
Gehrels, N., et al. 2004, ApJ, 611, 1005CrossRefGoogle Scholar
Hjorth, J., Sollerman, J., Møller, P., et al. 2003, Nature, 423, 847CrossRefGoogle Scholar
Katz, B., Budnik, R., & Waxman, E. 2010, ApJ, 716, 781CrossRefGoogle Scholar
Katz, B., Sapir, N., & Waxman, E. 2012, ApJ, 747, 147CrossRefGoogle Scholar
Klein, R. I. & Chevalier, R. A. 1978, ApJ, 223, L109CrossRefGoogle Scholar
Kulkarni, S. R., Frail, D. A., Wieringa, M. H., et al. 1998, Nature, 395, 663CrossRefGoogle Scholar
Lasher, G. J. & Chan, K. L. 1979, ApJ, 230, 742CrossRefGoogle Scholar
Malesani, D., Tagliaferri, G., Chincarini, G., et al. 2004, ApJ (Letters), 609, L5CrossRefGoogle Scholar
Miller, A. A., et al. 2009, ApJ, 690, 1303CrossRefGoogle Scholar
Moriya, T., Tominaga, N., Blinnikov, S. I., Baklanov, P. V., & Sorokina, E. I. 2011, MNRAS, 415, 199CrossRefGoogle Scholar
Murase, K., Thompson, T. A., Lacki, B. C., & Beacom, J. F. 2011, Phys. Rev. D, 84, 043003CrossRefGoogle Scholar
Nakar, E. & Sari, R. 2010, ApJ, 725, 904CrossRefGoogle Scholar
Ofek, E. O., et al. 2010, ApJ, 724, 1396CrossRefGoogle Scholar
Quimby, R. M., Aldering, G., Wheeler, J. C., Höflich, P., Akerlof, C. W., & Rykoff, E. S. 2007, ApJ (Letters), 668, L99CrossRefGoogle Scholar
Rabinak, I. & Waxman, E. 2011, ApJ, 728, 63CrossRefGoogle Scholar
Sapir, N., Katz, B., & Waxman, E. 2011, ApJ, 742, 36CrossRefGoogle Scholar
Smith, N., et al. 2007, ApJ, 666, 1116CrossRefGoogle Scholar
Smith, N. & McCray, R. 2007, ApJ (Letters), 671, L17CrossRefGoogle Scholar
Soderberg, A. M., Nakar, E., Berger, E., & Kulkarni, S. R. 2006, ApJ, 638, 930CrossRefGoogle Scholar
Soderberg, A. M., et al. 2008, Nature, 453, 469CrossRefGoogle Scholar
Soderberg, A. M., Chakraborti, S., Pignata, G., et al. 2010, Nature, 463, 513CrossRefGoogle Scholar
Svirski, G., Nakar, E., & Sari, R. 2012, arXiv:1202.3437Google Scholar
Tan, J. C., Matzner, C. D., & McKee, C. F. 2001, 20th Texas Symposium on relativistic astrophysics, 586, 638CrossRefGoogle Scholar
Vergani, S. D., D'Avanzo, P., Levan, A. J., et al. 2010, GRB Coordinates Network, 10512, 1Google Scholar
Wang, X.-Y., Li, Z., Waxman, E., & Mészáros, P. 2007, ApJ, 664, 1026CrossRefGoogle Scholar
Waxman, E. & Loeb, A. 2001, Phys. Rev. Lett., 87, 071101CrossRefGoogle Scholar
Waxman, E., Mészáros, P., & Campana, S. 2007, ApJ, 667, 351CrossRefGoogle Scholar