Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T15:49:49.717Z Has data issue: false hasContentIssue false

X-raying massive stars and their feedback near and far

Published online by Cambridge University Press:  29 August 2024

Lidia Oskinova*
Affiliation:
Institute for Physics and Astronomy, University Potsdam, D-14476 Potsdam, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars emit X-rays. Despite modest X-ray luminosities of single hot massive stars, the ongoing large observing campaigns combining X-ray and UV spectroscopy provide a tomographic view of stellar winds. It is now established that X-ray radiation is modulated with stellar rotation and shows the same period as discrete absorption components (DACs) in the UV resonance lines. The latter are associated with corotating interaction regions (CIRs) in stellar winds, therefore the mechanisms responsible for generation of X-rays and CIRs appear to be physically linked. Binary massive stars with accreting compact companions – high-mass X-ray binaries (HMXBs) – are routinely observed by modern X-ray observatories at Mpc distances. Joint observations in X-ray and UV allow to determine realistic properties of these systems. The brightest sources among HMXBs are ultraluminous X-ray sources (ULXs). Their powerful radiation is an important source of stellar feedback. HMXBs are the products of massive binary evolution and are typically found in the vicinity of young massive star clusters. The superstar clusters blow hot superbubbles which fill large areas in star-forming dwarf galaxies. Recent models show that X-ray emission from superbubbles is likely the dominant source of He ii ionization in metal-poor star-forming dwarf galaxies. To conclude, X-ray observations provide an important window for studying massive stars and their feedback near and far.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bozzo, E., Falanga, M., & Stella, L. 2008, ApJ, 683, 1031 Google Scholar
Bozzo, E., Oskinova, L., Feldmeier, A., & Falanga, M. 2016, A&A, 589, A102 Google Scholar
Bozzo, E., Oskinova, L., Lobel, A., & Hamann, W. R. 2017, A&A, 606, L10 10.1051/0004-6361/201731930CrossRefGoogle Scholar
Cassinelli, J. P., Cohen, D. H., Macfarlane, J. J., Sanders, W. T., & Welsh, B. Y. 1994, ApJ, 421, 705 Google Scholar
Danehkar, A., Oey, M. S., & Gray, W. J. 2021, ApJ, 921, 91 10.3847/1538-4357/ac1a76CrossRefGoogle Scholar
Giacconi, R., Gursky, H., Paolini, F. R., & Rossi, B. B. 1962, Physical Review Letters, 9, 439 Google Scholar
Goldstein, G., Huenemoerder, D. P., & Blank, D. 2004, AJ, 127, 2310 Google Scholar
Haberl, F., & Sturm, R. 2016, A&A, 586, A81 Google Scholar
Hainich, R., Ramachandran, V., Shenar, T., Sander, A. A. C., Todt, H., Gruner, D., Oskinova, L. M., & Hamann, W. R. 2019, A&A, 621, A85 Google Scholar
Hainich, R., et al. 2020, A&A, 634, A49 Google Scholar
Hamann, W. R., Brown, J. C., Feldmeier, A., & Oskinova, L. M. 2001, A&A, 378, 946 Google Scholar
Howarth, I. D., et al. 1993, ApJ, 417, 338 10.1086/173316CrossRefGoogle Scholar
Huenemoerder, D. P., Oskinova, L. M., Ignace, R., Waldron, W. L., Todt, H., Hamaguchi, K., & Kitamoto, S. 2012, ApJL, 756, L34 Google Scholar
Ignace, R., Gayley, K. G., Hamann, W. R., Huenemoerder, D. P., Oskinova, L. M., Pollock, A. M. T., & McFall, M. 2013, ApJ, 775, 29 10.1088/0004-637X/775/1/29CrossRefGoogle Scholar
Krivonos, R., Tsygankov, S., Lutovinov, A., Revnivtsev, M., Churazov, E., & Sunyaev, R. 2012, A&A, 545, A27 Google Scholar
Lagae, C., Driessen, F. A., Hennicker, L., Kee, N. D., & Sundqvist, J. O. 2021, A&A, 648, A94 Google Scholar
Lebouteiller, V., et al. 2017, A&A, 602, A45 Google Scholar
Lehmer, B. D., Eufrasio, R. T., Basu-Zych, A., Garofali, K., Gilbertson, W., Mesinger, A., & Yukita, M. 2022, ApJ, 930, 135 10.3847/1538-4357/ac63a7CrossRefGoogle Scholar
Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2006, A&A, 455, 1165 10.1051/0004-6361:20064987CrossRefGoogle Scholar
Lucy, L. B. 2012, A&A, 544, A120 10.1051/0004-6361/201118753CrossRefGoogle Scholar
Martin, C. L. 1996, ApJ, 465, 680 10.1086/177453CrossRefGoogle Scholar
Martnez-Chicharro, M., et al. 2021, MNRAS, 501, 5646 Google Scholar
Martnez-Núñez, S., et al. 2017, Space Science Reviews, 212, 59 10.1007/s11214-017-0340-1CrossRefGoogle Scholar
Martins, F., Schaerer, D., Hillier, D. J., Meynadier, F., Heydari-Malayeri, M., & Walborn, N. R. 2005, A&A, 441, 735 Google Scholar
Massa, D., Oskinova, L., Fullerton, A. W., Prinja, R. K., Bohlender, D. A., Morrison, N. D., Blake, M., & Pych, W. 2014, MNRAS, 441, 2173 Google Scholar
Massa, D., Oskinova, L., Prinja, R., & Ignace, R. 2019, ApJ, 873, 81 Google Scholar
Mineo, S., Gilfanov, M., & Sunyaev, R. 2012, MNRAS, 426, 1870 Google Scholar
Mullan, D. J. 1984, ApJ, 283, 303 Google Scholar
Nazé, Y. 2009, A&A, 506, 1055 10.1051/0004-6361/200912659CrossRefGoogle Scholar
Nazé, Y., Oskinova, L. M., & Gosset, E. 2013, ApJ, 763, 143 Google Scholar
Nazé, Y., Rauw, G., & Hutsemékers, D. 2012, A&A, 538, A47 Google Scholar
Nebot Gómez-Morán, A., & Oskinova, L. M. 2018, A&A, 620, A89 Google Scholar
Nichols, J., et al. 2015, ApJ, 809, 133 Google Scholar
Nichols, J. S., et al. 2021, ApJ, 906, 89 Google Scholar
Oskinova, L. M. 2005, MNRAS, 361, 679 Google Scholar
Oskinova, L. M. 2016, Advances in Space Research, 58, 739 Google Scholar
Oskinova, L. M., Bik, A., Mas-Hesse, J. M., Hayes, M., Adamo, A., Östlin, G., Fürst, F., & Ot-Floranes, H. 2019, A&A, 627, A63 10.1051/0004-6361/201935414CrossRefGoogle Scholar
Oskinova, L. M., Clarke, D., & Pollock, A. M. T. 2001, A&A, 378, L21 Google Scholar
Oskinova, L. M., Feldmeier, A., & Hamann, W. R. 2006, MNRAS, 372, 313 Google Scholar
Oskinova, L. M., Feldmeier, A., & Kretschmar, P. 2012, MNRAS, 421, 2820 Google Scholar
Oskinova, L. M., Ignace, R., Hamann, W. R., Pollock, A. M. T., & Brown, J. C. 2003, A&A, 402, 755 10.1051/0004-6361:20030300CrossRefGoogle Scholar
Oskinova, L. M., & Schaerer, D. 2022, A&A, 661, A67 10.1051/0004-6361/202142520CrossRefGoogle Scholar
Prinja, R. K., & Howarth, I. D. 1986, ApJS, 61, 357 Google Scholar
Rauw, G., & Nazé, Y. 2016, Advances in Space Research, 58, 761 10.1016/j.asr.2015.09.026CrossRefGoogle Scholar
Sazonov, S., & Khabibullin, I. 2018, MNRAS, 476, 2530 Google Scholar
Schaerer, D., Fragos, T., & Izotov, Y. I. 2019, A&A, 622, L10 Google Scholar
Shakura, N., Postnov, K., Sidoli, L., & Paizis, A. 2014, MNRAS, 442, 2325 Google Scholar
Sidoli, L., Postnov, K., Oskinova, L., Esposito, P., De Luca, A., Marelli, M., & Salvaterra, R. 2021, A&A, 654, A131 Google Scholar
Smith, B. J., Wagstaff, P., Struck, C., Soria, R., Dunn, B., Swartz, D., & Giroux, M. L. 2019, AJ, 158, 169 10.3847/1538-3881/ab3e72CrossRefGoogle Scholar
Tenorio-Tagle, G., Muñoz-Tuñón, C., Pérez, E., Silich, S., & Telles, E. 2006, ApJ, 643, 186 Google Scholar
Waldron, W. L., & Cassinelli, J. P. 2007, ApJ, 668, 456 10.1086/520919CrossRefGoogle Scholar
Walton, D. J., Mackenzie, A. D. A., Gully, H., Patel, N. R., Roberts, T. P., Earnshaw, H. P., & Mateos, S. 2022, MNRAS, 509, 1587 Google Scholar