Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T14:13:58.575Z Has data issue: false hasContentIssue false

X-raying Circumstellar Material around Young Stars

Published online by Cambridge University Press:  27 January 2016

P. C. Schneider
Affiliation:
ESA/ESTEC email: [email protected]
H. M. Günther
Affiliation:
MIT email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Young stars are surrounded by copious amounts of circumstellar material. Its composition, in particular its gas-to-dust ratio, is an important parameter. However, measuring this ratio is challenging, because gas mass estimates are often model dependent. X-ray absorption is sensitive to the gas along the line-of-sight while optical/near-IR extinction depends on the dust. Therefore, the absorber's gas-to-dust ratio is directly given by the ratio between X-ray and optical/near-IR extinction. We present three systems where we used X-ray and optical/near-IR data to constrain the gas-to-dust ratio of circumstellar material; from a dust rich debris disk to gaseous protoplanetary disks.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Antipin, S., Belinski, A., Cherepashchuk, A., Cherjasov, D., Dodin, A., Gorbunov, I., Lamzin, S., Kornilov, M., Kornilov, V., Potanin, S., Safonov, B., Senik, V., Shatsky, N., & Voziakova, O. 2015 IBVS, 6126, 1Google Scholar
Bouvier, J., Grankin, K., Ellerbroek, L. E., Bouy, H., & Barrado, D., 2013, A&A, 557, A77Google Scholar
Dai, F., Facchini, S., Clarke, C. J., & Haworth, T. J. 2015 MNRAS, 449, 1996CrossRefGoogle Scholar
Draine, B. T. 2003, ARAA, 41, 241CrossRefGoogle Scholar
Fitzgerald, M. P., Kalas, P. G., Duchêne, G., Pinte, C. & Graham, J. R., 2007 ApJ, 670, 536FCrossRefGoogle Scholar
France, K., Roberge, A., Lupu, R. E., Redfield, S., & Feldman, P. D., 2007 ApJ, 668, 1174Google Scholar
France, K., Burgh, E. B., Herczeg, G. J., Schindhelm, E., Yang, H., Abgrall, H., Roueff, E., Brown, A., Brown, J. M., & Linsky, J. L., 2012 ApJ, 744, 22FGoogle Scholar
Grosso, N., Bouvier, J., Montmerle, T., Fernández, M., Grankin, K., & Zapatero Osorio, M. R., 2007 A&A, 475, 607Google Scholar
Kalas, P., Liu, M. C., & Matthews, B. C. 2004, Science, 303, 1990Google Scholar
Krist, J. E., Ardila, D. R., Golimowski, D. A., Clampin, M., et al. 2005, AJ, 129, 1008CrossRefGoogle Scholar
Linsky, J. L., Ayres, T. R., Brown, A., & Osten, R. A., 2002 Astron. Nachr., 323, 3213.0.CO;2-H>CrossRefGoogle Scholar
Liu, M. C., Matthews, B. C., Williams, J. P., & Kalas, P. G., 2004 ApJ, 608, 526Google Scholar
Mamajek, E. E. & Bell, C. P. M. 2015, MNRAS, 445, 2169CrossRefGoogle Scholar
Roberge, A., Weinberger, A. J., Redfield, S., & Feldman, P. D., 2005 ApJL, 626, 105CrossRefGoogle Scholar
Rodriguez, J. E., Pepper, J., Stassun, K. G., Siverd, R. J., Cargile, P., Beatty, T. G., & Gaudi, B. S, 2013 AJ, 146, 112Google Scholar
Shenavrin, V. I., Petrov, P. P., & Grankin, K. N., 2015 IBVS, 6143, 1SGoogle Scholar
Schmitt, J. H. M. M. & Robrade, J., 2007 A&A, 462, 41Google Scholar
Schneider, P. C. & Schmitt, J. H. M. M., 2012 A&A, 516, 8Google Scholar
Skinner, S. L. & Güdel, M. 2014 ApJ, 788, 101CrossRefGoogle Scholar
Zuckerman, B., Song, I., Bessell, M. S., & Webb, R. A. 2001, ApJL, 562, L87CrossRefGoogle Scholar