Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T11:41:34.106Z Has data issue: false hasContentIssue false

X-Ray Variability in LINERs

Published online by Cambridge University Press:  21 February 2013

L. Hernández-García
Affiliation:
Instituto de Astrofísica de AndalucíaGlorieta de la Astronomía, s/n 18008, Granada, Spain
O. González-Martín
Affiliation:
Instituto de Astrofísica de Canarias, C/Vía Láctea s/n 38205 La Laguna, Tenerife, Spain email: [email protected]
J. Masegosa
Affiliation:
Instituto de Astrofísica de AndalucíaGlorieta de la Astronomía, s/n 18008, Granada, Spain
I Márquez
Affiliation:
Instituto de Astrofísica de AndalucíaGlorieta de la Astronomía, s/n 18008, Granada, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Active galactic nuclei (AGN) are powered by energetic phenomena which cannot be attributed to stars. LINERs appears to be the low power end of the AGN sequence with the lowest Eddington ratios but hosting the most massive black holes (typically 109 M⊙). Whereas variability is common for high Eddington ratio emitting sources, in the low Eddington regime data are not so clear. Recent investigations at UV (Maoz et al. 2005) and X-ray frequencies (Younes et al. 2011, González-Martín et al. 2011) point out to the long term variable nature for some particular LINERs.

In this work we add more evidence about the X-ray variability in LINERs and investigate its nature. The data set comprises X-ray archival spectroscopy from observations taken from Chandra and XMM-Newton, selecting LINERs with several observations at different epochs. Up to now we analysed two LINER 1.9 objects, NGC 1052 and NGC 4278, and checked that variability is due to different mechanisms based on the results of spectral fittings.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Cardullo, A., Corsini, E. M., Beifiori, A., Pizzella, A., & Buson, L. M. 2008, ASPC, 396, 53Google Scholar
Elitzur, M. & Shlosman, I. 2006, ApJ, 648, L101CrossRefGoogle Scholar
González-Martín, O., Masegosa, J., Márquez, I., Guerrero, M., & Dultzin-Hacyan, D. 2006, A&A, 460, 45Google Scholar
González-Martín, O., Masegosa, J., Márquez, I., Guainazzi, M., & Jiménez-Bailón, E. 2009, A&A, 506, 1170Google Scholar
González-Martín, O., Papadakis, I., Braito, V., Masegosa, J., Márquez, I., Mateos, S., Acosta-Pulido, J. A., Martínez, M. A., Ebrero, J., Esquej, P., O'Brien, P., Tueller, J., Warwick, R. S., & Watson, M. G. 2011, A&A, 527, A142Google Scholar
González-Martín, O. & Vaughan, S. 2012, A&A, 544, A80Google Scholar
Heckman, T. M. 1980, A&A, 80, 152Google Scholar
Ho, L. C., Filippenko, A. V., Sargent, W. L. W., & Peng, C. Y. 1997, ApJS, 112, 391Google Scholar
Maoz, D., Nagar, N. M., Falcke, H., & Wilson, A. S. 2005, ApJ, 625, 699Google Scholar
McHardy, I. M., Koerding, E., Knigge, C., Uttley, P., & Fender, R. P. 2006, Nature, 444, 730Google Scholar
Nenkova, M., Sirocky, M. M., Ivezić, Ž., & Elitzur, M. 2008, ApJ, 685, 147Google Scholar
Risaliti, G., Elvis, M., Fabbiano, G., Baldi, A., Zezas, A., & Salvati, M. 2007, ApJ, 659, L111CrossRefGoogle Scholar
Risaliti, G., Elvis, M., Bianchi, S., & Matt, G. 2010, MNRAS, 406, L20Google Scholar
Risaliti, G., Nardini, E., Salvati, M., Elvis, M., Fabbiano, G., Maiolino, R., Pietrini, P., & Torricelli-Ciamponi, G. 2011, MNRAS, 406, L20Google Scholar
Younes, G., Porquet, D., Sabra, B., Grosso, N., Reeves, J. N., & Allen, M. 2010, A&A, 517, A33Google Scholar
Younes, G., Porquet, D., Sabra, B., & Reeves, J. N. 2011, A&A, 530, A149Google Scholar