Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T13:26:42.282Z Has data issue: false hasContentIssue false

X-ray Studies of Planetary Nebulae

Published online by Cambridge University Press:  08 August 2017

Rodolfo Montez Jr.*
Affiliation:
Smithsonian Astrophysical Observatory Cambridge, MA 02138USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray emission from planetary nebulae (PNe) provides unique insight on the formation and evolution of PNe. Past observations and the ongoing Chandra Planetary Nebulae Survey (ChanPlaNS) provide a consensus on the two types of X-ray emission detected from PNe: extended and compact point-like sources. Extended X-ray emission arises from a shocked “hot bubble” plasma that resides within the nebular shell. Cooler than expected hot bubble plasma temperatures spurred a number of potential solutions with one emerging as the likely dominate process. The origin of X-ray emission from compact sources at the location of the central star is less clear. These sources might arise from one or combinations of the following processes: self-shocking stellar winds, spun-up binary companions, and/or accretion, perhaps from mass transfer, PN fallback, or debris disks. In the discovery phase, X-ray studies of PNe have mainly focused on the origin of the various emission processes. New directions incorporate multi-wavelength observations to study the influence of X-ray emission on the rest of the electromagnetic spectrum.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Akashi, M., Meiron, Y., & Soker, N., 2008, NewA, 13, 563 CrossRefGoogle Scholar
Chu, Y.-H., Guerrero, M. A., Gruendl, R. A., Williams, R. M., & Kaler, J. B., 2001, ApJ, 553, L69 CrossRefGoogle Scholar
Freeman, M., Montez, R., Kastner, J. H. Jr, et al. 2014, ApJ, 794, 99 CrossRefGoogle Scholar
Freeman, M. J. & Kastner, J. H., 2016, ApJS, 226, 15 CrossRefGoogle Scholar
Guerrero, M. A., Gruendl, R. A., & Chu, Y.-H., 2002, A&A, 387, L1 Google Scholar
Guerrero, M. A., Chu, Y.-H., Gruendl, R. A., Williams, R. M., & Kaler, J. B., 2001, ApJ, 553, L55 CrossRefGoogle Scholar
Kastner, J. H., Montez, R., Balick, B. Jr, et al. 2012, AJ, 144, 58 CrossRefGoogle Scholar
Kastner, J. H., Soker, N., Vrtilek, S. D., & Dgani, R., 2000, ApJ, 545, L57 CrossRefGoogle Scholar
Maness, H. & Vrtilek, S. D., 2003, PASP, 115, 1002 CrossRefGoogle Scholar
Montez, R., Kastner, J. H. Jr, Balick, B., et al. 2015, ApJ, 800, 8 CrossRefGoogle Scholar
Montez, R., De Marco, O. Jr, Kastner, J. H., & Chu, Y.-H., 2010, ApJ, 721, 1820-1828 CrossRefGoogle Scholar
Montez, R., & Kastner, J. H. Jr, 2013, ApJ, 766, 26 CrossRefGoogle Scholar
Montez, R., Kastner, J. H. Jr, De Marco, O., & Soker, N., 2005, ApJ, 635, 381 CrossRefGoogle Scholar
Nordon, R., Behar, E., Soker, N., Kastner, J. H., & Yu, Y. S., 2009, ApJ, 695, 834 CrossRefGoogle Scholar
Ruiz, N., Chu, Y.-H., Gruendl, R. A., et al. 2013, ApJ, 767, 35 CrossRefGoogle Scholar
Sandin, C., Steffen, M., Schönberner, D., & Rühling, U., 2016, A&A, 586, A57 Google Scholar
Soker, N. & Kastner, J. H., 2003, ApJ, 583, 368 CrossRefGoogle Scholar
Steffen, M., Schönberner, D., & Warmuth, A., 2008, A&A, 489, 173 Google Scholar
Yu, Y. S., Nordon, R., Kastner, J. H., et al. 2009, ApJ, 690, 440 CrossRefGoogle Scholar