Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T23:22:37.875Z Has data issue: false hasContentIssue false

X-ray Polarization at the Crossroads

Published online by Cambridge University Press:  27 February 2023

Jeremy Heyl
Affiliation:
Department of Physics and Astronomy, University of British Columbia, Vancouver BC V6T 1Z1, Canada
Ilaria Caiazzo
Affiliation:
TAPIR, Walter Burke Institute for Theoretical Physics, Mail Code 350-17, Caltech, Pasadena, CA 91125, USA
Denis González-Caniulef
Affiliation:
Department of Physics and Astronomy, University of British Columbia, Vancouver BC V6T 1Z1, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We argue that measurements of X-ray polarization using the recently launched Imaging X-ray Polarimetry Explorer will answer many open questions about magnetars in particular the physical state of their surfaces, whether vacuum birefringence exists, and the nature of the hard X-ray emission from these objects. We outline the capabilities of the instrument, specific models and the results of simulations for the magnetar 4U 0142+61.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Caiazzo, I. 2019, PhD thesis, University of British Columbia, http://dx.doi.org/10.14288/1.0387445 CrossRefGoogle Scholar
Caiazzo, I., González-Caniulef, D., Heyl, J., & Fernández, R. 2021, MNRAS, submitted. https://arxiv.org/abs/2112.03401 Google Scholar
Caiazzo, I., & Heyl, J. 2018, Galaxies, 6, 57, doi: 10.3390/galaxies6020057 Google Scholar
Caiazzo, I., Heyl, J., & Turolla, R. 2019, in Astrophysics and Space Science Library, Vol. 460, Astronomical Polarisation from the Infrared to Gamma Rays, ed. R. Mignani, A. Shearer, A. Słowikowska, & S. Zane, 301, doi: 10.1007/978-3-030-19715-5_12 Google Scholar
Fernández, R., & Davis, S. W. 2011, ApJ, 730, 131, doi: 10.1088/0004-637X/730/2/131 CrossRefGoogle Scholar
Fernández, R., & Thompson, C. 2007, ApJ, 660, 615, doi: 10.1086/51181010.1086/511810 CrossRefGoogle Scholar
Gnedin, Y. N., Pavlov, G. G., & Shibanov, Y. A. 1978, Soviet Astronomy Letters, 4, 117 Google Scholar
Gunzález Caniulef, D., Zane, Taverna, Turolla, R., & Wu, K. 2016, MNRAS, 459, 3585, doi: 10.1093/mnras/stw804 CrossRefGoogle Scholar
Heisenberg, W., & Euler, H. 1936, Z. Physik, 98, 714 CrossRefGoogle Scholar
Heyl, J. 2022, Universe, submittedGoogle Scholar
Heyl, J. S., & Hernquist, L. 1997, Journal of Physics A Mathematical General, 30, 6485, doi: 10.1088/0305-4470/30/18/022 CrossRefGoogle Scholar
Heyl, J. S., & Hernquist, L. 1998 a, MNRAS, 300, 599, doi: 10.1046/j.1365-8711.1998.01885.x CrossRefGoogle Scholar
Heyl, J. S., & Hernquist, L. 1998 b, MNRAS, 298, L17, doi: 10.1046/j.1365-8711.1998.01853.x CrossRefGoogle Scholar
Heyl, J. S., & Shaviv, N. J. 2000, MNRAS, 311, 555, doi: 10.1046/j.1365-8711.2000.03076.x CrossRefGoogle Scholar
Heyl, J. S., & Shaviv, N. J. 2002, Phys. Rev. D, 66, 023002, doi: 10.1103/PhysRevD.66.023002 CrossRefGoogle Scholar
Hoffman, K., & Heyl, J. 2009, MNRAS, 400, 1986, doi: 10.1111/j.1365-2966.2009.15591.x CrossRefGoogle Scholar
Lloyd, D. A. 2003, ArXiv Astrophysics e-prints Google Scholar
Lloyd, Perna, Slane, Nicastro, Hernquist, L. 2003, ArXiv Astrophysics e-prints Google Scholar
Marshall, H. L. 2021, AJ, 162, 134, doi: 10.3847/1538-3881/ac173d CrossRefGoogle Scholar
Medin, Z., & Lai, D. 2007, MNRAS, 382, 1833, doi: 10.1111/j.1365-2966.2007.12492.x CrossRefGoogle Scholar
Nobili, L., Turolla, R., & Zane, S. 2008, MNRAS, 386, 1527, doi: 10.1111/j.1365-2966.2008.13125.xCrossRefGoogle Scholar
Novick, R., Weisskopf, M. C., Angel, J. R. P., Sutherland, P. G. 1977, ApJ, 215, L117, doi: 10.1086/18249210.1086/182492 CrossRefGoogle Scholar
Potekhin, A. Y., Suleimanov, V. F., van Adelsberg, M., & Werner, K. 2012, A&A, 546, A121, doi: 10.1051/0004-6361/201219747 Google Scholar
Schwinger, J. 1951, Physical Review, 82, 664 CrossRefGoogle Scholar
Sgrò, C. 2017, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10397, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 103970F, doi: 10.1117/12.2273922 CrossRefGoogle Scholar
Shaviv, N. J., Heyl, J. S., & Lithwick, Y. 1999, MNRAS, 306, 333, doi: 10.1046/j.1365-8711.1999.02509.xCrossRefGoogle Scholar
Tendulkar, S. P., Hascöet, R., Yang, C., et al. 2015, ApJ, 808, 32, doi: 10.1088/0004-637X/808/1/32CrossRefGoogle Scholar
Tsai, W. Y., & Erber, T. 1975, Phys. Rev. D, 12, 1132 CrossRefGoogle Scholar
van Adelsberg, M., Lai, D., Potekhin, A. Y., & Arras, P. 2005, ApJ, 628, 902, doi: 10.1086/43087110.1086/430871 CrossRefGoogle Scholar
Weisskopf, M. C., et al. 2021, arXiv e-prints, arXiv:2112.01269. https://arxiv.org/abs/2112.01269Google Scholar
Weisskopf, V. S. 1936, Kongelige Danske Videnskaberns Selskab, Mathematisk-Fysiske Meddelelser, 14, 1Google Scholar
Zane, S., Rea, N., Turolla, R., & Nobili, L. 2009, MNRAS, 398, 1403, doi: 10.1111/j.1365-2966.2009.15190.xCrossRefGoogle Scholar