Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T19:55:16.506Z Has data issue: false hasContentIssue false

X-ray - Infrared relation of AGNs and search for highly obscured accretion in the AKARI NEP Field

Published online by Cambridge University Press:  10 June 2020

Takamitsu Miyaji
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Km. 103 Carret. Tijuana-Ensendada, Ensenada, 22860 Mexico email: [email protected]
AKARI NEP Survey Team
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Km. 103 Carret. Tijuana-Ensendada, Ensenada, 22860 Mexico email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The infrared Astronomical Satellite AKARI conducted deep (∼0.4 deg2) and wide (∼ 5.4 deg2) surveys around the North Ecliptic Pole (NEP) with its InfraRed Camera (IRC) with nine filters continuously covering the 2–25 μm range. These photometric bands include three filters that fill the “ Spitzer gap” between the wavelength coverages of IRAC and MIPS. This unique feature has enabled us to make sensitive mid-infrared detection of AGN candidates at z∼1-2, based on the Spectral Energy Distribution (SED) fitting including hot dust emission in the AGN torus. This enables us to compare X-rays and the AGN torus component of the infrared emission to help us identify highly absorbed AGNs, including Compton-thick ones. We report our results of the Chandra observation of the AKARI NEP Deep Field and discuss the prospects for upcoming Spectrum-RG (eROSITA+ART-XC) on the AKARI Wide field.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Ciesla, L., Charmandaris, V., Georgakakis, A., Bernhard, E., Mitchell, P. D., Buat, V., Elbaz, D., LeFloc’h, E., et al. 2015, A&A, 576, A10Google Scholar
Hanami, H., Ishigaki, T., Fujishiro, N., Nakanishi, K., Miyaji, T., Krumpe, M., Umetsu, K., Ohyama, Y., et al. 2012, PASJ, 64, 70CrossRefGoogle Scholar
Kim, S. J., Lee, H. M., Matsuhara, H., Wada, T., Oyabu, S., Im, M., Jeon, Y., Kang, E., et al. 2012, A&A, 548, A29Google Scholar
Krumpe, M., Miyaji, T., Brunner, H., Hanami, H., Ishigaki, T., Takagi, T., Markowitz, A. G., Goto, T., et al. 2015, MNRAS, 446, 911CrossRefGoogle Scholar
Matsuhara, H., Wada, T., Matsuura, S., Nakagawa, T., Kawada, M., Ohyama, Y., Pearson, C. P., Oyabu, S., et al. 2006, PASJ, 58, 67310.1093/pasj/58.4.673CrossRefGoogle Scholar
Merloni, A., Predehl, P., Becker, W., Böhringer, H., Boller, T., Brunner, H., Brusa, M., Dennerl, K., et al., 2012, eROSITA Science Book: Mapping the Structure of the Energetic Universe,arXiv:1209.3114Google Scholar
Miyaji, T., Hasinger, G., Salvato, M., Brusa, M.Cappelluti, N., Civano, F., Puccetti, S., Elvis, M., et al. 2015, ApJ, 804, 104CrossRefGoogle Scholar
Murata, K., Matsuhara, H., Wada, T., Arimatsu, K., Oi, N., Takagi, T., Oyabu, S., Goto, T., et al. 2013, A&A, 559, A132Google Scholar
Nenkova, M., Sirocky, M. M., Ivezić, Ž., & Elitzur, M. 2008, ApJ, 685, 147CrossRefGoogle Scholar
Ueda, Y., Akiyama, M., Hasinger, G., Miyaji, T., & Watson, M. G. 2014, ApJ, 786, 104CrossRefGoogle Scholar