Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T03:00:43.956Z Has data issue: false hasContentIssue false

X-Ray and Optical Properties of Black Widows and Redbacks

Published online by Cambridge University Press:  04 June 2018

Mallory S.E. Roberts
Affiliation:
New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, [email protected] Eureka Scientific, Inc. Oakland, CAUSA
Hind Al Noori
Affiliation:
New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, [email protected]
Rodrigo A. Torres
Affiliation:
New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, [email protected]
Maura A. McLaughlin
Affiliation:
West Virginia University, Morgantown, WV, USA
Peter A. Gentile
Affiliation:
West Virginia University, Morgantown, WV, USA
Jason W.T. Hessels
Affiliation:
University of Amsterdam, Netherlands
Scott M. Ransom
Affiliation:
NRAO, Charlottesville, VA, USA
Paul S. Ray
Affiliation:
U.S. Naval Research Lab, Washington D.C., USA
Matthew Kerr
Affiliation:
U.S. Naval Research Lab, Washington D.C., USA
Rene P. Breton
Affiliation:
University of Manchester, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Black widows and redbacks are binary systems consisting of a millisecond pulsar in a close binary with a companion having matter driven off of its surface by the pulsar wind. X-rays due to an intrabinary shock have been observed from many of these systems, as well as orbital variations in the optical emission from the companion due to heating and tidal distortion. We have been systematically studying these systems in radio, optical and X-rays. Here we will present an overview of X-ray and optical studies of these systems, including new XMM-Newton and NuStar data obtained from several of them, along with new optical photometry.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Arzoumanian, Z., Fruchter, A. S., & Taylor, J. H., 1994, ApJL, 426, 85CrossRefGoogle Scholar
Applegate, J. H., & Shaham, J., 1994, ApJ, 436, 312CrossRefGoogle Scholar
Archibald, A. M., Stairs, I. H., Ransom, S. M., et al. 2009, Science, 324, 1411CrossRefGoogle Scholar
Arons, J., 2012, Space Sci. Revs, 173, 341CrossRefGoogle Scholar
Arons, J., & Tavani, M., 1993, ApJ, 403, 249CrossRefGoogle Scholar
Bassa, C. G., Patruno, A., Hessels, J. W. T., et al. 2014, MNRAS, 441, 1825CrossRefGoogle Scholar
Bates, S. D., Bailes, M., Bhat, N. D. R., et al. 2011, MNRAS, 416, 2455CrossRefGoogle Scholar
Bellm, E. C., Kaplan, D. L., Breton, R. P., et al. 2016, ApJ, 816, 74CrossRefGoogle Scholar
Benvenuto, O. G., De Vito, M. A., & Horvath, J. E., 2014, ApJL, 786, L7CrossRefGoogle Scholar
Benvenuto, O. G., De Vito, M. A., & Horvath, J. E., 2015, ApJ, 798, 44CrossRefGoogle Scholar
Bognar, K., Roberts, M., & Chatterjee, S. 2015, BAAS, 225, 346.11Google Scholar
Breton, R. P., van Kerkwijk, M. H., Roberts, M. S. E., et al. 2013, ApJ, 769, 108CrossRefGoogle Scholar
Ergma, E., Sarna, M. J., & Antipova, J., 1998, MNRAS, 300, 352CrossRefGoogle Scholar
Ergma, E. V., & Fedorova, A. V., 1991, A&A, 242, 125Google Scholar
Fruchter, A. S., Stinebring, D. R., & Taylor, J. H. 1988, Nature, 333, 237CrossRefGoogle Scholar
Fruchter, A. S. et al. 1990 ApJ, 351, 642CrossRefGoogle Scholar
Gentile, P. A., Roberts, M. S. E., McLaughlin, M. A., et al. 2014, ApJ, 783, 69CrossRefGoogle Scholar
Hessels, J. W. T., Roberts, M. S. E., McLaughlin, M. A., et al. 2011, AIP-CP, 1357, 40Google Scholar
Huang, R. H. H., Kong, A. K. H., Takata, J., et al. 2012, ApJ, 760, 92CrossRefGoogle Scholar
Kong, A. K. H., Hui, C. Y., Takata, J., Li, K. L., & Tam, P. H. T., 2017, ApJ, 839, 130CrossRefGoogle Scholar
Lynch, R. S., Boyles, J., Ransom, S. M., et al. 2013, ApJ, 763, 81CrossRefGoogle Scholar
Papitto, A., Ferrigno, C., Bozzo, E., et al. 2013, Nature, 501, 517CrossRefGoogle Scholar
Podsiadlowski, P., Rappaport, S., & Pfahl, E. D., 2002, ApJ, 565, 1107CrossRefGoogle Scholar
Rappaport, S., Podsiadlowski, P., Joss, P. C., Di Stefano, R., & Han, Z., 1995, MNRAS, 273, 731CrossRefGoogle Scholar
Ray, P. S., Abdo, A. A., Parent, D., et al. 2012, 2011 Fermi Symposium - eConf C110509, arXiv:1205.3089Google Scholar
Roberts, M. S. E., 2011, AIP-CP, 1357, 127Google Scholar
Roberts, M. S. E., McLaughlin, M. A., Gentile, P. A., et al. 2015, 2014 Fermi Symposium - eConf C14102.1, arXiv:1502.07208Google Scholar
Romani, R. W., & Sanchez, N., 2016, ApJ, 828, 7CrossRefGoogle Scholar
Ruderman, M., Shaham, J., & Tavani, M., 1989, ApJ, 336, 507CrossRefGoogle Scholar
Sironi, L., Keshet, U., & Lemoine, M., 2015, Space Sci. Revs, 191, 519CrossRefGoogle Scholar
Sironi, L., & Spitkovsky, A., 2011, ApJ, 741, 39CrossRefGoogle Scholar
Stovall, K., Lynch, R. S., Ransom, S. M., et al. 2014, ApJ, 791, 67CrossRefGoogle Scholar
Stovall, K., Allen, B., Bogdanov, S., et al. 2016, ApJ, 833, 192CrossRefGoogle Scholar
Tauris, T. M., & Savonije, G. J., 1999, A&A, 350, 928Google Scholar
Tendulkar, S. P., Yang, C., An, H., et al. 2014, ApJ, 791, 77CrossRefGoogle Scholar
van den Heuvel, E. P. J., & van Paradijs, J., 1988, Nature, 334, 227CrossRefGoogle Scholar
van Kerkwijk, M. H., Breton, R. P., & Kulkarni, S. R., 2011, ApJ, 728, 95CrossRefGoogle Scholar
Wadiasingh, Z., Harding, A. K., Venter, C., Böttcher, M., & Baring, M. G., 2017, ApJ, 839, 80CrossRefGoogle Scholar